We provide a scorecard of chemometric techniques used in spectroscopy. The tables and lists of reference sources given here provide an indispensable resource for anyone seeking guidance on understanding chemometric methods or choosing the most suitable approach for a given analysis problem.
In writing this column over the years, we have covered many topics related to the use of statistics and chemometrics in spectroscopy. At this point, we are taking a break (so to speak) to build a scorecard of chemometric techniqu es consisting of topics we have either previously discussed or plan to discuss going forward. Although it is quite difficult to define these complex topics in short sentences, without the use of graphical or mathematical representations, we have attempted to do so here. In this column, we show method comparison tables of chemometric methods, and include the method name, a brief text description, key tutorial references, whether the method was previously discussed in detail within previous “Chemometrics in Spectroscopy” articles, and the primary analytical purpose of the method. In past articles, we have addressed many details associated with quantitative and qualitative spectroscopy, particularly the fine points of calibration methods, and we plan to continue to do so into the future. We note that we have already covered some aspects of signal preprocessing in the context of other topics, but have not addressed these in great detail. As we progress with this series, we intend to cover the essential chemometric methods in greater detail and expand into new frontiers.
A recently published book review of Chemometrics in Spectroscopy (2nd edition, Elsevier) recommended that the subjects of neural networks (NNs)and multivariate curve resolution (MCR) be covered, as well as other advanced chemometrics techniques that have not been described to date in our column series of the same name (1,2). Although we have addressed many topics in the column, there are still more to cover. Some of the techniques we have not addressed will receive attention in future columns. And to expand on that, at some point we hope to provide more information on available open source code and programming languages for chemometric methods, as well as commercial software options. We may not get to write detailed articles on all of the topics listed in the following tables, but, at some future time, we plan to discuss many more of them. We note that, for the tables below, we restricted ourselves to one tutorial or descriptive reference for each of the topics (rows), resulting in 29 additional references (3–31). These summary tables are an imperfect approach, because there are several (or many) very good references for each topic, but, given space limitations, we selected a single reference for each topic that we considered most applicable to Spectroscopy readers, and also tried to select those references that might be considered “classic,” or tutorial papers. As we delve into each subject or topic, we will include additional references that will be helpful to the reader in understanding and using the various chemometric methods.
Table I represents signal preprocessing techniques; these data processing methods are often used prior to the application of explorative, qualitative, or quantitative methods. Table II lists component analysis techniques used mostly for data exploration and discovery. Table III shows the variety of quantitative (calibration) methods used to take raw or preprocessed data, and compute predictive calibration models for quantitative determination of physical or chemical parameters in a dataset. Table IV provides a summary of the qualitative (calibration) methods used to take raw or preprocessed data and compute predictive calibration models for qualitative (classification) of different groups or types of samples or of physical or chemical parameters in a dataset. As noted, because of space limitations, a single primary reference is included for each method.
References
Jerome Workman, Jr. serves on the Editorial Advisory Board of Spectroscopy and is the Senior Technical Editor for LCGC and Spectroscopy. He is also a Certified Core Adjunct Professor at U.S. National University in La Jolla, California. He was formerly the Executive Vice President of Research and Engineering for Unity Scientific and Process Sensors Corporation.
Howard Mark serves on the Editorial Advisory Board of Spectroscopy, and runs a consulting service, Mark Electronics, in Suffern, New York. Direct correspondence to: SpectroscopyEdit@mmhgroup.com
AI, Deep Learning, and Machine Learning in the Dynamic World of Spectroscopy
December 2nd 2024Over the past two years Spectroscopy Magazine has increased our coverage of artificial intelligence (AI), deep learning (DL), and machine learning (ML) and the mathematical approaches relevant to the AI topic. In this article we summarize AI coverage and provide the reference links for a series of selected articles specifically examining these subjects. The resources highlighted in this overview article include those from the Analytically Speaking podcasts, the Chemometrics in Spectroscopy column, and various feature articles and news stories published in Spectroscopy. Here, we provide active links to each of the full articles or podcasts resident on the Spectroscopy website.
Diffuse Reflectance Spectroscopy to Advance Tree-Level NSC Analysis
November 28th 2024Researchers have developed a novel method combining near-infrared (NIR) and mid-infrared (MIR) diffuse reflectance spectroscopy with advanced data fusion techniques to improve the accuracy of non-structural carbohydrate estimation in diverse tree tissues, advancing carbon cycle research.
Young Scientist Awardee Uses Spectrophotometry and AI for Pesticide Detection Tool
November 11th 2024Sirish Subash is the winner of the Young Scientist Award, presented by 3M and Discovery education. His work incorporates spectrophotometry, a nondestructive method that measures the light of various wavelengths that is reflected off fruits and vegetables.
Emerging Leader Highlights Innovations in Machine Learning, Chemometrics at SciX Awards Session
October 23rd 2024Five invited speakers joined Joseph Smith, the 2024 Emerging Leader in Molecular Spectroscopy, on stage to speak about trends in hyperspectral imaging, FT-IR, surface enhanced Raman spectroscopy (SERS), and more during the conference in Raleigh.