Application Notebook
Demonstration of the advantages of using the Orbis micro-XRF elemental analyzer rather than other analysis techniques to perform elemental analysis through a plastic barrier and/or at atmospheric pressure.
Demonstration of the advantages of using the Orbis micro-XRF elemental analyzer rather than other analysis techniques to perform elemental analysis through a plastic barrier and/or at atmospheric pressure.
Most elemental analysis techniques require a sample to be exposed to the excitation source and/or placed under vacuum. For example, ICP-MS and atomic absorption (AA) require sample digestion or ablation and then exposure to the excitation source, while SEM-EDS requires exposure of the sample to the electron beam while under, at least, low vacuum. There are certain situations where it is highly desirable to leave the sample in a plastic barrier bag or analyze the sample at atmospheric pressure. For example, the analyst could be concerned about contamination from toxic, corrosive, or radioactive samples or may need to prevent environmental contamination of the sample. For micro-spot elemental analysis, the Orbis micro-XRF spectrometer is unique as an elemental analysis tool in that the analysis can be done through a plastic bag and, if necessary, at atmospheric pressure.
Using SEM/EDS for Analysis
Using ICP-MS for Analysis
In Comparison, Orbis Micro-XRF Analysis Offers an Attractive Alternative
Micro-XRF is performed using X-rays as the exciting source with fluoresced X-rays characteristic of the elements present as the signal. Lighter elements (such as Na–Ar) fluoresce lower energy X-rays, which are more readily absorbed or scattered while traveling through a plastic barrier or through air at atmospheric pressure. Heavier elements fluoresce higher energy X-rays which experience minimal attenuation while traversing typical plastic barrier materials or the atmospheric path to the detector. Hence, where it is desirable to keep a sample in a plastic containment bag and/or analyze the sample at atmospheric pressure, micro-XRF can provide valuable elemental analysis data even if there is a trade-off on the detection limits of lighter elements.
The following analytical results include: a uranium rich glass, a mining standard powder, and moon rock, all performed under varying chamber pressure and all contained using plastic bags. The conditions for each sample are briefly described. In all the samples there is signal attenuation at the lighter emissions (<4 keV) while very little at the higher emissions.
Figure 1 shows three spectra with variation in the plastic bagging. The measured concentrations of uranium were approximately 1.68 wt% using the exposed sample in air. Red is the uranium glass exposed with no barrier, blue enclosed in a single 50 µm bag, and green enclosed in two layers of 50 µm bag, for a total barrier of 100 µm. Above 4 keV there is little signal attenuation; however, below 4 keV there is distinguishable attenuation.
Figure 1: Analysis results for a uranium glass sample. Red - with no barrier; blue - enclosed in a single 50 µm bag; green - enclosed in two layers of 50 µm bag.
Figure 2 shows a mining sample powder of Canmet DH-1, which has a known concentration of uranium at 0.26 wt% compared with a measured concentration in the previous glass sample of 1.68 wt%. Here the red line represents the powder contained within a thinner Mylar envelope, blue within a thicker 50 µm plastic bag, and green the same 50 µm sample bag using a rhodium primary beam filter which improves lower limits of detection for the uranium X-ray lines. Both the Mylar and blue 50 µm plastic bag samples were analyzed without a filter in place. By comparing the blue and green spectra it is evident that filtering improves the peak to background for the U(Lα) line allowing for improved detection limits while using the thicker barrier plastic.
Figure 2: Analysis results for a Canmet DH-1 sample. Red - enclosed in thin Mylar envelope; blue - enclosed in 50 µm plastic bag; green - enclosed in 50 µm plastic bag using rhodium primary beam filter.
Figure 3 shows a lunar rock composed of transition elements rather than higher energy actinides. The data is represented by elemental maps instead of spectral plots. Starting from the left, these are the results from an uncontained sample, followed by samples contained with 50.8 µm nylon, 50.8 µm Teflon, and 127 µm Teflon containment bagging with analysis done in vacuum. The higher intensity color indicates stronger signal intensity with less signal absorption by the barrier material. Even using the higher density Teflon barrier material in comparison to the nylon, it is possible to efficiently analyze lower energy transition elements with the barrier in place. The goal in this case was to evaluate the impact of using increasingly stronger, gas tight containment bags on the elemental analysis via micro-XRF.
Figure 3: Analysis results for lunar rock with data represented by elemental maps.
The Orbis micro-XRF spectrometer has been used to provide valuable elemental analyses on samples contained within a barrier bag under atmospheric pressure and vacuum. Two capabilities have been shown here, single point analysis and elemental mapping. Where analysis of inclusions and defects or higher resolution mapping is of interest, the ultra-high intensity 30 µm polycapillary optic is particularly useful. Therefore, the Orbis PC configuration with this type of optic is recommended for this type of work. The standard hardware suite includes the primary beam energy filters used here for improved detection limits over limited spectral ranges as well as the automated stage for sample positioning and mapping. The Orbis can also be configured with two larger spot collimators along with the polycapillary optic for sample measurements more suited to a larger spot analysis.
EDAX, Inc.
91 McKee Drive, Mahway, NJ 07430
tel. (201) 529-4880, fax (201) 529-3156
Website: www.edax.com
Applications of Micro X-Ray Fluorescence Spectroscopy in Food and Agricultural Products
January 25th 2025In recent years, advances in X-ray optics and detectors have enabled the commercialization of laboratory μXRF spectrometers with spot sizes of ~3 to 30 μm that are suitable for routine imaging of element localization, which was previously only available with scanning electron microscopy (SEM-EDS). This new technique opens a variety of new μXRF applications in the food and agricultural sciences, which have the potential to provide researchers with valuable data that can enhance food safety, improve product consistency, and refine our understanding of the mechanisms of elemental uptake and homeostasis in agricultural crops. This month’s column takes a more detailed look at some of those application areas.
Testing Solutions for Metals and PFAS in Water
January 22nd 2025When it comes to water analysis, it can be challenging for labs to keep up with ever-changing testing regulations while also executing time-efficient, accurate, and risk-mitigating workflows. To ensure the safety of our water, there are a host of national and international regulators such as the US Environmental Protection Agency (EPA), World Health Organization (WHO), and the European Union (EU) that demand stringent testing methods for drinking water and wastewater. Those methods often call for fast implementation and lengthy processes, as well as high sensitivity and reliable instrumentation. This paper explains how your ICP-MS, ICP-OES, and LC-MS-MS workflows can be optimized for compliance with the latest requirements for water testing set by regulations like US EPA methods 200.8, 6010, 6020, and 537.1, along with ISO 17294-2. It will discuss the challenges faced by regulatory labs to meet requirements and present field-proven tips and tricks for simplified implementation and maximized uptime.
Practical Autodilution for ICP-MS and ICP-OES
January 20th 2025Gain insights into improving efficiency and accuracy in elemental analysis through automated dilution technology. Learn about the key capabilities of the Agilent ADS 2 system and its seamless integration with ICP-MS and ICP-OES workflows.
UV-Vis Spectroscopy: Exporting Your Measurement Out of the Instrument
January 20th 2025Optical fibers in ultraviolet-visible (UV-Vis) spectroscopy can enable measurements outside the traditional sample compartment. This paper details the components needed for fiber optic systems, such as couplers and probes, and reviews the performance of Agilent's Cary series instruments. It is crucial to choose the right fiber optic setup for a specific lab’s needs to ensure accurate and efficient measurements.