Special Issues
Drinking water is an important part of environmental exposure, especially for small children. Countries around the world have put regulations in place to monitor drinking water quality for a wide range of hazardous compounds.
Drinking water is an important part of environmental exposure, especially for small children. Countries around the world have put regulations in place to monitor drinking water quality for a wide range of hazardous compounds. Methods such as SL 392-2007 in China, the EN methods in Europe, and US methods such as method 525.2, cover a large suite of analytes of concern, extracted using solid phase extraction (SPE) disks and using GC–MS for detection.
US EPA method 525.2 may use SPE to extract the analytes of interest from water samples. It includes a variety of quality control measures to ensure the method is under control throughout the analysis (1). The SPE-DEX® 5000 was used in this study to extract the EPA Method 525.2 analytes from six prepared water samples as described in section 9.3, Initial Demonstration of Laboratory Accuracy and Precision. The test involves measuring 4–7 samples of reagent water spiked at approximately the mid-point of the calibration curve, 2–5 µg/L of the full suite of analytes. For each analyte and surrogate, the spike recovery, expressed as a percentage of the true value, should be 70–130% and the relative standard deviation (RSD) should be <30% to meet method criteria. All six samples were extracted using the same procedure and calibration parameters.
Extraction was performed with the SPE-DEX 5000 Automated Disk Extraction System (2). The SPE-DEX® 5000 is an automated system that conditions the solid phase extraction disk, loads the sample through the disk, rinses the sample bottle, and elutes the sample all without user intervention. Atlantic® C18 high capacity SPE disks were used, DryDisk membrane drying was used to remove residual water from the extract, and GC–MS was used for analysis. Results are shown in Table I for six replicate preparations and show excellent recovery and precision.
CLICK TABLE TO ENLARGE
References
Method 525.2, Determination of Organic Compounds in Drinking Water by Liquid-Solid Extraction and Capillary Column Gas Chromatography/Mass Spectrometry, US EPA https://www.epa.gov/sites/production/files/2015-10/documents/method_525-2_rev-2_1995.pdf, accessed April 12, 2017.
Extraction of a Full Suite of Semivolatile Compounds from Drinking Water using Automated Solid Phase Extraction, AN1141703_01, available from www.horizontechinc.com.
Horizon Technology, Inc.
16 Northwestern Drive, Salem, NH 03079
tel. (603) 893-3663
Website: www.horizontechinc.com
Improving Fluorescence and Raman Techniques for Environmental Microplastic Analysis
March 31st 2025A recent study conducted at the LaserLaB Amsterdam and Vrije Universiteit Amsterdam (the Netherlands) explored spectroscopic imaging techniques, including Raman and fluorescence microscopy, for characterizing microplastics (MPs), focusing on optimizing sample preparation, particularly density separation, and Nile Red staining.Spectroscopy spoke to Merel Konings, corresponding author of the paper resulting from the study, about her work
New Study Provides Insights into Chiral Smectic Phases
March 31st 2025Researchers from the Institute of Nuclear Physics Polish Academy of Sciences have unveiled new insights into the molecular arrangement of the 7HH6 compound’s smectic phases using X-ray diffraction (XRD) and infrared (IR) spectroscopy.