Special Issues
Inductively coupled plasma–mass spectrometry (ICP-MS) has good elemental coverage, low detection limits, and wide dynamic range, making it the technique of choice in many inorganic analytical laboratories. However, many sample types contain high levels of dissolved solids, which may be problematic for routine analysis using ICP-MS. Also, many new users focus on maximizing sensitivity when they optimize their systems, which can lead to degraded matrix tolerance. In this tutorial, we discuss the factors that affect the matrix tolerance of an ICP-MS instrument, and recommend steps that can be taken to optimize the key parameters.
The maximum level of total dissolved solids (TDS) in samples to be analyzed using ICP-MS has long been accepted as 0.2%, or 2000 ppm. Above this level, drift is accelerated due to matrix deposits on the interface, analyte signals are reduced due to ionization suppression, and sensitivity is lower due to space charge effects during ion extraction and focusing.
An example of a typical sample dilution approach might involve a soil sample prepared using 0.2 g of dried material, digested, and diluted to a final volume of 100 mL (0.2 g/100 mL = 0.2% TDS). Note that the TDS limit is usually based on the inorganic dissolved solids, since the organic content will usually be decomposed during the sample preparation. Samples or digests that contain higher than 0.2% TDS would typically be diluted to reach this level.
As an alternative to liquid dilution, most modern ICP-MS instruments offer a facility to apply "aerosol dilution." Aerosol dilution uses an additional argon gas flow to dilute the aerosol after it emerges from the spray chamber. Together with a reduction in the nebulizer gas flow rate to reduce the amount of aerosol generated, this has the effect of diluting both the total amount of sample matrix passed to the plasma and the amount of water vapor present in the gas stream.
Aerosol dilution is much simpler and more cost effective than an automated liquid dilution system, which typically includes multiple pumps and switching valves, all linked using tubing and connectors that can clog or leak. Aerosol dilution also offers the following benefits compared to liquid dilution:
Figure 1: Approximate degree of ionization (%) for several elements at different plasma temperatures. Illustrates how changes in plasma temperature have a greater impact on sensitivity for poorly ionized elements. First ionization potential shown (eV).
As a rule, sample introduction hardware and operating conditions that increase sensitivity will reduce matrix tolerance. Optimizing for maximum sensitivity can therefore lead to operating conditions that do not provide sufficient robustness for routine analysis of many sample types. Sample introduction options and settings that affect matrix tolerance include:
Having addressed the sample preparation and nebulizer/spray chamber/torch configuration, the plasma conditions should be optimized to maximize robustness. Plasma parameters are interrelated, with the different settings interacting to produce a trade-off between sensitivity and robustness. Plasma robustness is typically monitored using the cerium oxide (CeO/Ce) ratio. Cerium oxide is used as it is among the most strongly-bound metal-oxide ions, so a low CeO/Ce ratio indicates that the plasma has enough energy to dry the aerosol droplets, decompose the matrix, dissociate molecular species, and ionize the analyte atoms. These processes are illustrated schematically in Figure 2. Parameters that can be used to optimize the matrix tolerance of the ICP-MS plasma are:
Figure 2: Schematic illustration of the processes in the ICP-MS plasma, from aerosol droplet drying to analyte ionization.
Optimizing the hardware configuration and operating parameters for robustness leads to reduced sensitivity. Consequently, the underlying detection limit performance must be checked under the selected robust method conditions.
Modern ICP-MS systems are capable of extremely high sensitivity when optimized for sensitivity rather than matrix tolerance. Optimizing for matrix tolerance as described above will reduce this sensitivity but should still allow the method requirements to be met. This needs to be confirmed using performance tests such as low level spike recoveries and assessment of method detection limit, as appropriate for the application.
An important consideration for multielement analysis is the capability of the ICP-MS to measure the major elements together with the trace analytes. For many commercial laboratories, this is a key requirement for maximizing productivity by allowing all the required elements to be determined in a single measurement. For this to be achieved routinely, the dynamic range of the ICP-MS detector must be as wide as possible.
Modern ICP-MS systems use a detector with a dynamic range of up to about 10 or 11 orders of magnitude. This ensures that the highest concentration major elements can be measured without requiring customized settings to attenuate the most intense signals. User-defined signal attenuation is not easy to apply when the sample types being measured are of variable and unknown composition, and where the major elements are not known in advance.
Once the ICP-MS has been optimized for robustness, and detection limits and dynamic range have been confirmed, method performance should be verified by analyzing a representative batch of samples.
Most regulated methods will include analysis of periodic check standards or similar in-run quality control (QC) to check that the calibration remains valid, and the signal has not drifted out of control. A periodic check standard is useful to confirm the ongoing validity of the calibration, but a better indication of the true sensitivity during a sample sequence can be obtained from plotting the internal standard (ISTD) signals for each sample. The ISTD signals are not corrected, so indicate any changes in sensitivity of the instrument due to drift or suppression, for every solution run throughout the entire batch.
For ICP-MS analyses, ISTDs are usually added automatically using an online mixing T-connector. If several ISTD elements are added, the ISTD plot can also indicate any mass-dependency in the signal change as well as enabling contamination of an ISTD element in a sample to be identified.
Ed McCurdy is an ICP-MS Product Specialist for Agilent Technologies in Cheshire, United Kingdom. Direct correspondence to: ed_mccurdy@agilent.com
The Fundamental Role of Advanced Hyphenated Techniques in Lithium-Ion Battery Research
December 4th 2024Spectroscopy spoke with Uwe Karst, a full professor at the University of Münster in the Institute of Inorganic and Analytical Chemistry, to discuss his research on hyphenated analytical techniques in battery research.
Mass Spectrometry for Forensic Analysis: An Interview with Glen Jackson
November 27th 2024As part of “The Future of Forensic Analysis” content series, Spectroscopy sat down with Glen P. Jackson of West Virginia University to talk about the historical development of mass spectrometry in forensic analysis.
Detecting Cancer Biomarkers in Canines: An Interview with Landulfo Silveira Jr.
November 5th 2024Spectroscopy sat down with Landulfo Silveira Jr. of Universidade Anhembi Morumbi-UAM and Center for Innovation, Technology and Education-CITÉ (São Paulo, Brazil) to talk about his team’s latest research using Raman spectroscopy to detect biomarkers of cancer in canine sera.