March 4th 2025
HORIBA has released three new products including tools for Raman screening, advanced molecular fingerprinting, and atomic fingerprinting. Two of these new tools will be highlighted during Pittcon.
Advances in ICP-MS Detection of Selenium in Proteins
March 20th 2015Selenoproteins play an important role in human physiology and health, and as a result, sensitive methods are needed for their analysis. Joanna Szpunar of the National Research Council of France has been working with bioinorganic speciation analysis and hyphenated techniques for metallomics studies for some time. She recently spoke to Spectroscopy about using laser-ablation inductively coupled plasma–mass spectrometry (LA-ICP-MS) to detect trace levels of human selenoproteins in cell extracts and about her work with ICP-MS-assisted electrospray tandem MS for the identification of selenium-containing proteins in rice grown on seleniferous soils.
UV Resonance Raman Spectroscopy Analysis of Protein Structure and Folding
March 16th 2015UV resonance Raman spectroscopy examines how UV light interacts with the electrons of samples and provides information about their molecular structure and dynamics. Sanford A. Asher, Distinguished Professor of Chemistry at the University of Pittsburgh, is using the technique to study peptide excited states and conformations and protein folding, with the ultimate goal of helping to advance research into the mechanisms of disease. He recently spoke to us about this work.
Targeted Protein Quantification Using High-Throughput Capillary LC–MS
March 1st 2013The detection limit, analytical precision, dynamic range, and robustness of a method for the targeted quantification of peptides using a capillary-flow LC–MS system were evaluated by spiking known amounts of isotopically labeled yeast peptides into a 500-ng yeast digest matrix.
A Novel Approach to Measure Crop Plant Protein Expression
July 1st 2012Liquid chromatography–mass spectrometry (LC–MS) successfully differentiated transgenic from native protein in a case where the proteins were highly homologous and could not be differentiated by traditional methods. This methodology may be useful for other studies of transgenic crops.
Reliable and Efficient Sulfur Detection in Proteins Using ICP-MS with Capillary LC
October 1st 2010With recent research, the University of Oviedo's analytical spectrometry research group has taken a step closer to the absolute quantification of proteins. Quantification based upon isotope dilution mass spectrometry of sulfur is hampered by gas-based polyatomic interferences. By implementing a quadrupole inductively coupled mass spectrometer with collision/reaction cell technology, the group has been able to overcome the issues and has increased reliability while optimizing the efficiency of its analyses.
Protein Identification in Complex Mixtures: A Comparison of Accurate-Mass Q-TOF and Ion-Trap LC–MS
March 1st 2008Because it is extremely rapid, biomarker discovery and identification using liquid chromatography–mass spectrometry (LC-MS), including both ion-trap and triple-quadrupole LC–MS, is well established. Fractionation of complex samples before LC–MS-MS analysis might be necessary to identify the proteins, greatly increasing the number of analyses required. In this case, there is ongoing debate regarding knowing whether the protein is identified correctly, knowing how much prior fractionation is needed to reduce complexity to the point where low-abundance proteins can be detected reliably, and balancing specificity with sensitivity.