February 28th 2025
Spectroscopy recently sat down with Dr. Geraldine Monjardez and two of her coauthors, Dr. Christopher Zall and Dr. Jared Estevanes, to discuss their most recent study, which examined the crystal structure of ammonium nitrate (AN) following exposure to explosive events.
The Rise of Raman Spectroscopy in Biomedicine
December 1st 2018Raman spectroscopy is promising some dramatic breakthroughs in biomedical applications. Juergen Popp and his team are determined to realize that promise, by working to make the technique a powerful tool for cell biology and clinical studies.
On-Capillary Surface-Enhanced Raman Spectroscopy for Determination of Glutathione in Whole Blood
November 1st 2018On-capillary surface-enhanced Raman spectroscopy (SERS) is showing dramatic potential for analysis of human whole blood constituents using microsampling. A group of researchers has recently published a method to measure glutathione (GSH) in a 2 μL sample of human whole blood. This exciting development could lead to rapid point-of-care analysis of other essential blood components. We recently interviewed Julia Kuligowski of the Health Research Institute La Fe, in Valencia, Spain, and Guillermo Quintas, of the LEITAT Technological Center in Barcelona, about this research.
The 2018 Emerging Leader in Molecular Spectroscopy Award
October 12th 2018Megan Thielges, an associate professor of chemistry at Indiana University is the recipient of the 2018 Emerging Leader in Molecular Spectroscopy Award, presented by Spectroscopy magazine. This award, presented at the SciX conference each year, recognizes a uniquely talented young molecular spectroscopist. This October, Prof. Thielges will give a plenary lecture and be honored within a SciX award symposium. She recently spoke with us regarding her research work, and a few other topics, demonstrating the application of site- specific 2D IR spectroscopy for investigating protein function dynamics.
Detecting Neurotransmitters Using SERS and SESORS
September 17th 2018Surface-enhanced Raman spectroscopy (SERS) and surface-enhanced spatially offset Raman spectroscopy (SESORS) have been used in medical research for the detection of neurotransmitters such as melatonin, serotonin, and epinephrine. These techniques can assist in the diagnosis of neurological diseases and provide information that can lead to more effective treatment methods. Bhavya Sharma an assistant professor in the department of chemistry at the University of Tennessee (Knoxville, Tennessee), has been using SERS and SESORS to detect neurotransmitters and probe subsurface layers through the skull. Here, she describes the advantages of these techniques and how they are used in biological applications.
Not All Nanoparticle Analysis Challenges are Created Equal
September 10th 2018The detection, quantitation, and characterization of nanoparticles using inductively coupled plasma–mass spectrometry (ICP-MS), and in particular using single-particle ICP-MS (SP-ICP-MS), has developed significantly in recent years. However, the difficulties involved in this type of analysis vary, depending on the composition of the nanoparticles. Martín Resano of the University of Zaragoza, together with colleagues from Ghent University, has recently developed a method for characterizing nanoparticles made from silicon dioxide (Si02), which are much more challenging to detect than those made from silver or gold. He recently spoke to us about this work.
Applying TERS to Questions in Drug Discovery
August 20th 2018If a new drug candidate is going to fail, it’s best if it does so as early in the process as possible-before a lot of time and money have been spent developing it. Figuring out whether a drug will fail, and why it might fail, is a complex problem, however. . Zachary Schultz of The Ohio State University is investigating how tip-enhanced Raman spectroscopy (TERS) can help with this process, particularly in terms of studying binding between membrane receptors and ligands.
Laser-Induced Plasmas and Atomic Spectroscopy
July 30th 2018Laser-induced plasmas are formed by the application of a laser pulse to a target surface, which instantly excites, ionizes, and vaporizes the material into a very hot vapor plume. One of the main uses of these plasmas is in laser-induced breakdown spectroscopy, a rapidly evolving and exciting field of study. Alessandro De Giacomo is a professor in the Department of Chemistry at the University of Bari in Italy and an associated researcher at CNR-NANOTEC, and he and his group are involved with the study of laser-induced plasmas and the use of nanoparticles (NPs) in laser-induced breakdown spectroscopy to enhance signal. We recently spoke with him about this research.
Surface-Enhanced Raman Spectroscopy for Improved Disease Detection
June 18th 2018Surface-enhanced Raman spectroscopy (SERS) is an exciting avenue of study in the field of disease research, particularly with respect to its potential ability to provide enhanced detection compared with previous analytical techniques. Marc D. Porter, who is a professor of Chemistry and Chemical Engineering at the University of Utah, has been working with SERS to improve the detection of diseases such as tuberculosis and hepatic cancer. We recently spoke with him about this research.
Understanding Molecular Interactions with Advanced FT-IR Spectroscopy and Imaging
May 1st 2018Fourier transform infrared (FT-IR) and attenuated total reflection (ATR)-FT-IR spectroscopic imaging are important tools for understanding molecular interactions. Sergei G. Kazarian of Imperial College London has used these advanced imaging techniques in a wide range of applications.
Understanding Molecular Interactions with Advanced FT-IR Spectroscopy and Imaging
April 9th 2018Advanced vibrational spectroscopic techniques such as Fourier transform infrared (FT-IR) and attenuated total reflection (ATR)-FT-IR spectroscopic imaging are important tools for understanding molecular interactions and using them to help engineer new products and processes. Sergei G. Kazarian, Professor of Physical Chemistry at the Department of Chemical Engineering at Imperial College London, UK, has used these advanced imaging techniques for applications as varied as studying crude oil fouling, analyzing pharmaceutical formulations in microfluidic channels, examining biological systems and biopsy samples, and investigating the pigment-oil interaction in priceless paintings at the microscale level. We recently spoke with him about this research.
Educating Raman Spectroscopy Users
March 19th 2018In many areas of spectroscopy, scientists working at instrument companies often make valuable contributions, by advancing the practical application of techniques and by educating customers. Andrew Whitley of HORIBA Scientific, is one such scientist. He works diligently to identify potential new areas for Raman applications, and also dedicates much of his time to educating spectroscopists and new users to the field about the benefits of using Raman spectroscopy. Here, Whitley discusses his continued interest in spectroscopy, his role educating others, and his hope for the future of Raman spectroscopy.
Improving Sensitivity and Sample Introduction Efficiency in ICP-OES and ICP-MS
March 9th 2018Although inductively coupled plasma-optical emission spectrometry (ICP-OES) and ICP-mass spectrometry (MS) are generally considered to be mature techniques, researchers continue to investigate the fundamentals of the techniques and improve their capabilities. Diane Beauchemin, a professor at Queens University in Kingston, Ontario, is engaged in that challenge. She recently spoke to Spectroscopy about methods she has developed for simultaneous speciation and her work to improve sample introduction efficiency, to improve sensitivity and detection limits.
Imaging Malaria-Infected Red Blood Cells with AFM-IR
February 15th 2018In biology, the study of intracellular structures is important and requires analytical techniques with submicrometer resolution. Atomic force microscopy-infrared (AFM-IR) spectroscopy is one technique that has the required lateral spatial resolution to observe such structures. David Perez-Guaita, PhD, at the Centre for Biospectroscopy at Monash University in Australia, is pioneering work applying AFM-IR to the study of red blood cells infected with the malaria parasite.
Manipulating Sound with Lasers and Optics
February 6th 2018Lasers are used for a wide range of industrial, medical, spectroscopic, and military applications. Daniel Kazal, a graduate research assistant in the Department of Chemistry and Biochemistry at the University of Maryland Baltimore County, has developed a novel technique for channeling sound using a tube-shaped laser beam that forms a thermal gradient. Based on his work with this approach, he received the 2017 FACSS Innovation Award. We recently spoke with him about this research. This interview is part of a series of interviews with the winners of awards presented at SciX.
NIR Spectroscopy for Quality Control of an Ebola Virus Drug
December 11th 2017Near-infrared (NIR) spectroscopy is an important technique in the pharmaceutical industry because of its ability to provide information about bulk material without sample preparation. Multivariate calibration techniques are frequently used to analyze the NIR data. Robert Lodder, who is a professor in the Department of Pharmaceutical Sciences at the University of Kentucky in Lexington, Kentucky, uses NIR spectroscopy along with an interesting alternative calibration technique, molecular factor computing, in his work with an experimental drug for combating the Ebola virus. We recently spoke with him about his research.
LIBS and XRF: Complementary Analysis Techniques for Pharmaceutical Development
December 7th 2017The atomic spectroscopy techniques of laser-induced breakdown spectroscopy (LIBS) and X-ray fluorescence spectroscopy have different strengths. Lydia Breckenridge, a senior research investigator at Bristol-Myers Squibb, uses both techniques in her work in pharmaceutical development. Here, she shares some of the advantages and challenges of using these techniques, and how the greatest benefits are sometimes derived by focusing on their complementarity, and using them in combination.
Understanding Emerging Biopolymers with 2D Raman Correlation Spectroscopy
November 9th 2017Two-dimensional (2D) Raman correlation spectroscopy is a powerful analytical technique for analyzing a system under the influence of an external perturbation. Isao Noda, of the Department of Materials Science and Engineering, at the University of Delaware and Danimer Scientific, has been developing 2D Raman correlation spectroscopy and applying it to the study of various materials, including exciting new biopolymers. He recently spoke to us about this work.
In Vivo XRF Analysis of Toxic Elements
October 10th 2017In recent years, researchers have been making important developments to advance the effectiveness of spectroscopic techniques for biomedical uses ranging from the identification of infectious agents to measuring the edges of cancerous tumors. X-ray fluorescence (XRF) spectroscopy is among the techniques that can have useful medical applications. David R. Chettle, a professor in the Department of Physics and Astronomy at McMaster University in Hamilton, Ontario, Canada, uses XRF for the in vivo measurement of toxic elements in human subjects, with the goal of developing devices that can be used to investigate the possible health effects of toxin exposure. He recently spoke to us about his research.
Advancing Forensic Analyses with Raman Spectroscopy
September 14th 2017In recent years, there have been significant advances in the application of vibrational spectroscopy to the analysis of forensic samples. Igor K. Lednev, a professor in the Department of Chemistry at the University at Albany, the State University of New York, has been developing the use of Raman spectroscopy for a variety of forensic applications, including the determining the age of blood stains and linking gunshot residues to specific ammunition–firearm combinations. He recently spoke to Spectroscopy about his work.
Investigating Nanoparticles in the Environment with SP-ICP-MS
September 8th 2017There is growing concern about the unknown effects that nanoparticles may have on the environment, especially in drinking water and plants. Single-particle inductively coupled plasma–mass spectrometry (SP-ICP-MS) is emerging as a useful technique for analyzing nanoparticles and their presence in environmental and biological systems. Honglan Shi, a chemistry professor at Missouri University of Science and Technology, and her research group have been using SP-ICP-MS to investigate nanoparticles in drinking water and plant uptake. She recently spoke to Spectroscopy about this work.
Detecting Blood on Fabrics: Infrared Diffuse Reflectance Versus Attenuated Total Reflectance FT-IR
August 14th 2017In forensic science, the detection of blood on fabric is a very useful tool. Therefore, it is important that the methods used for detecting blood be as accurate as possible. Michael L. Myrick and Stephen L. Morgan, both professors in the Department of Chemistry and Biochemistry at the University of South Carolina, have been investigating the use of infrared (IR) spectroscopy for this purpose, including comparing the effectiveness of infrared diffuse reflectance versus attenuated total reflectance Fourier-transform IR (ATR FT-IR). They recently spoke to Spectroscopy about their recent studies and the critical questions they have been addressing in how IR spectroscopy is used in forensic science.
Solving Polymer Problems Using IR Spectroscopy
July 12th 2017Naoto Nagai, of the Industrial Research Institute of Niigata Prefecture in Japan, has been studying the potential of IR spectroscopy for investigating higher-order structures of polymers. He and his colleagues recently looked at the IR spectra of polyoxymethylene (POM) mold plates and the cause of occasional resin cracks.
Quantitative Drug Metabolite Profiling without Radiolabels Using HPLC–ICP-MS
June 6th 2017In drug development, quantitative determination of a candidate drug and its metabolites in biofluids is an important step. The standard technique for quantitative metabolite profiling is radiolabeling followed by high performance liquid chromatography (HPLC) with radiodetection, but there are disadvantages to this approach, including cost and time, as well as safety and ethical concerns related to administering radiolabeled compounds to humans.
Detecting Pathogenic Mycoplasmas with Surface-Enhanced Raman Spectroscopy
May 30th 2017Surface-enhanced Raman spectroscopy (SERS) with silver nanorod-array substrates has been used in various biological applications, such as detection of proteins in body fluids. Duncan C. Krause, who is a professor in the Department of Microbiology at the University of Georgia, worked with his group to establish a SERS method with those substrates for detecting the pathenogenic mycoplasma that causes bronchitis and pneumonia. We recently spoke with him about this research.
New Developments in 2D IR Advance Medical Research and Materials Analysis
May 10th 2017Coherent two-dimensional infrared spectroscopy (2D IR) uses a series of IR femtosecond laser pulses to pump and then probe the response of a system, making it possible to learn much more about the structure and dynamics of molecules than can be seen with one-dimensional IR spectroscopy. The technique’s inventor, Martin T. Zanni of the University of Wisconsin-Madison, discussed 2D IR in a 2013 interview in Spectroscopy (1). Since 2013, Zanni has applied 2D IR spectroscopy to new systems and has started a company, PhaseTech Spectroscopy, Inc., to commercialize the technique.