The Coblentz Society announced that Professor Takeshi Hasegawa of Tokyo Institute of Technology (Tokyo, Japan) was selected as the recipient of the 2009 Craver Award in recognition of his creation of a novel spectroscopic technique for analyzing molecular orientation in a polymeric thin film deposited on a solid substrate, which can be carried out on a conventional FT-IR.
The Coblentz Society announced that Professor Takeshi Hasegawa of Tokyo Institute of Technology (Tokyo, Japan) was selected as the recipient of the 2009 Craver Award in recognition of his creation of a novel spectroscopic technique for analyzing molecular orientation in a polymeric thin film deposited on a solid substrate, which can be carried out on a conventional FT-IR. Dr. Hasegawa’s development of the technique of multiple-angle incidence resolution spectrometry (MAIRS) is one of the more important advances in surface chemistry in the last decade.
The Coblentz Society created the Craver Award in 2006 to recognize the efforts of young professional spectroscopists that have made significant contributions in applied analytical vibrational spectroscopy. The award was named for Clara D. Craver in recognition of her pioneering efforts in promoting the practice of infrared vibrational spectroscopy and her many years of service to the Coblentz Society.
The Craver Award will be presented at the 2009 FACSS Conference, to be held October 18–22, 2009, at the Marriott Hotel in Louisville, Kentucky.
Best of the Week: EAS Conference Coverage, IR Spectroscopy, Microplastics
November 22nd 2024Top articles published this week include highlights from the Eastern Analytical Symposium, a news article about the infrared (IR) spectroscopy market, and a couple of news articles recapping spectroscopic analysis of microplastics.
FT-IR Analysis of pH and Xylitol Driven Conformational Changes of Ovalbumin–Amide VI Band Study
November 21st 2024This study uses Fourier transform infrared (FT-IR) spectroscopy to analyze how the globular protein ovalbumin's secondary structures transition under varying pH conditions in the presence of the cosolvent xylitol, highlighting the role of noncovalent interactions in these conformational changes.