Outdoor pH test | Image Credit: © Shawn Hempel - stock.adobe.com

Researchers from Technische Universität Dresden, reveal new insights into protonated mono and polyamines' behavior by determining pKa values using Fourier transform infrared titration, providing valuable data for chemical analysis.
In a recent study published in Applied Spectroscopy on November 20, 2023, researchers from Technische Universität Dresden in Germany, led by corresponding author and faculty member Martin Müller, have delved into the determination of pKa values for protonated mono and polyamines in concentrated solutions, utilizing Fourier transform infrared (FT-IR) titration and classical potentiometric (POT) titration techniques. The article, titled "Determination of the pKa Value of Protonated Mono and Polyamine in Solution Using Fourier Transform Infrared Titration," yields information on the intriguing behavior of propanolamine hydrochloride (PAMH) and poly(allylamine hydrochloride) (PAAMH) under varying pH conditions (1).
Outdoor pH test | Image Credit: © Shawn Hempel - stock.adobe.com
The research employed in situ attenuated total reflection (ATR)-FT-IR spectra on PAMH and PAAMH solutions, starting with their fully protonated forms and incrementally adjusting the pH with sodium hydroxide addition. By monitoring the variation of diagnostic infrared (IR) bands, particularly the δ(NH3+) band, the dissociation process of the NH3+ groups was tracked. The dissociation degree αIR of the ammonium groups was determined from the decrease of the most intense band area A.
The study innovatively plotted pH against αIR, fitting the curve with a modified Henderson–Hasselbalch function pH = pKa + B log (αIR/1 – αIR), enabling the extraction of crucial parameters—pKa and cooperativity factor B. The obtained pKa values from FT-IR titration were qualitatively aligned with those from POT titration, providing comprehensive insights into the dissociation processes of these chemical species (1).
The article systematically explores and discusses quantitative deviations in pKa values between polyelectrolyte (PEL) and respective monoelectrolyte. The researchers delve into the potential effects of PEL molecular weight, ambient ionic strength, and titration concept (FT-IR and POT), drawing on classical models of weak PEL.
This research not only refines our understanding of protonated mono and polyamines but also contributes valuable data to the broader field of chemical analysis using spectroscopy. The article, available in the latest issue of Applied Spectroscopy, showcases the detailed work of the research team in unraveling the mysteries of pH behavior in these intriguing chemical systems.
This article was written with the help of artificial intelligence and has been edited to ensure accuracy and clarity. You can read more about our policy for using AI here.
(1) Müller, M.; Wirth, L.; Urban, B. Determination of the pKa Value of Protonated Mono and Polyamine in Solution Using Fourier Transform Infrared Titration. Appl. Spectrosc. 2023, November 20, 2023. DOI: 10.1177/00037028231213673
New Study Provides Insights into Chiral Smectic Phases
March 31st 2025Researchers from the Institute of Nuclear Physics Polish Academy of Sciences have unveiled new insights into the molecular arrangement of the 7HH6 compound’s smectic phases using X-ray diffraction (XRD) and infrared (IR) spectroscopy.
Exoplanet Discovery Using Spectroscopy
March 26th 2025Recent advancements in exoplanet detection, including high-resolution spectroscopy, adaptive optics, and artificial intelligence (AI)-driven data analysis, are significantly improving our ability to identify and study distant planets. These developments mark a turning point in the search for habitable worlds beyond our solar system.
Using Spectroscopy to Reveal the Secrets of Space
March 25th 2025Scientists are using advanced spectroscopic techniques to probe the universe, uncovering vital insights about celestial objects. A new study by Diriba Gonfa Tolasa of Assosa University, Ethiopia, highlights how atomic and molecular physics contribute to astrophysical discoveries, shaping our understanding of stars, galaxies, and even the possibility of extraterrestrial life.