Researchers from Technische Universität Dresden, reveal new insights into protonated mono and polyamines' behavior by determining pKa values using Fourier transform infrared titration, providing valuable data for chemical analysis.
In a recent study published in Applied Spectroscopy on November 20, 2023, researchers from Technische Universität Dresden in Germany, led by corresponding author and faculty member Martin Müller, have delved into the determination of pKa values for protonated mono and polyamines in concentrated solutions, utilizing Fourier transform infrared (FT-IR) titration and classical potentiometric (POT) titration techniques. The article, titled "Determination of the pKa Value of Protonated Mono and Polyamine in Solution Using Fourier Transform Infrared Titration," yields information on the intriguing behavior of propanolamine hydrochloride (PAMH) and poly(allylamine hydrochloride) (PAAMH) under varying pH conditions (1).
The research employed in situ attenuated total reflection (ATR)-FT-IR spectra on PAMH and PAAMH solutions, starting with their fully protonated forms and incrementally adjusting the pH with sodium hydroxide addition. By monitoring the variation of diagnostic infrared (IR) bands, particularly the δ(NH3+) band, the dissociation process of the NH3+ groups was tracked. The dissociation degree αIR of the ammonium groups was determined from the decrease of the most intense band area A.
The study innovatively plotted pH against αIR, fitting the curve with a modified Henderson–Hasselbalch function pH = pKa + B log (αIR/1 – αIR), enabling the extraction of crucial parameters—pKa and cooperativity factor B. The obtained pKa values from FT-IR titration were qualitatively aligned with those from POT titration, providing comprehensive insights into the dissociation processes of these chemical species (1).
The article systematically explores and discusses quantitative deviations in pKa values between polyelectrolyte (PEL) and respective monoelectrolyte. The researchers delve into the potential effects of PEL molecular weight, ambient ionic strength, and titration concept (FT-IR and POT), drawing on classical models of weak PEL.
This research not only refines our understanding of protonated mono and polyamines but also contributes valuable data to the broader field of chemical analysis using spectroscopy. The article, available in the latest issue of Applied Spectroscopy, showcases the detailed work of the research team in unraveling the mysteries of pH behavior in these intriguing chemical systems.
This article was written with the help of artificial intelligence and has been edited to ensure accuracy and clarity. You can read more about our policy for using AI here.
(1) Müller, M.; Wirth, L.; Urban, B. Determination of the pKa Value of Protonated Mono and Polyamine in Solution Using Fourier Transform Infrared Titration. Appl. Spectrosc. 2023, November 20, 2023. DOI: 10.1177/00037028231213673
Best of the Week: EAS Conference Coverage, IR Spectroscopy, Microplastics
November 22nd 2024Top articles published this week include highlights from the Eastern Analytical Symposium, a news article about the infrared (IR) spectroscopy market, and a couple of news articles recapping spectroscopic analysis of microplastics.
FT-IR Analysis of pH and Xylitol Driven Conformational Changes of Ovalbumin–Amide VI Band Study
November 21st 2024This study uses Fourier transform infrared (FT-IR) spectroscopy to analyze how the globular protein ovalbumin's secondary structures transition under varying pH conditions in the presence of the cosolvent xylitol, highlighting the role of noncovalent interactions in these conformational changes.