Researchers at the Leibniz Institute of Photonic Technology have developed a rapid method to correct infrared attenuated total reflection (ATR) infrared spectra, essential for accurate analysis in various scientific fields. By bypassing iterative processes, this approach enhances efficiency and precision.
Representation of frequency variation in spectral peaks: © bobby - stock.adobe.com
Infrared spectroscopy is a vital analytical tool used across scientific disciplines, but interpreting data from attenuated total reflection (ATR) measurements has long presented challenges. Traditional correction methods are time-consuming and can compromise accuracy, limiting the technique's potential. However, a recent breakthrough by researchers at the Leibniz Institute of Photonic Technology (IPHT) promises to revolutionize this process, offering a rapid and precise solution (1).
Led by Thomas G. Mayerhöfer, William D. P. Costa, and Jürgen Popp, the team focused on optimizing ATR correction for mid-infrared (MIR) spectra, which are often plagued by refractive index variations affecting peak accuracy. Their study, published in the Journal Applied Spectroscopy, introduces a novel approach that significantly accelerates and enhances the correction process. The team evaluated their correction methodology for multiple ATR crystal materials and accessories (1).
The conventional ATR measurement configuration utilizes an angle of incidence of 45° and lacks a polarizer, resulting in incomplete spectral information, particularly for complex samples. Mayerhöfer and his colleagues addressed this limitation by leveraging both the unpolarized 45° ATR spectrum and the polarization angle, enabling the determination of the ATR s-polarized spectrum. This critical insight paved the way for an improved non-iterative Kramers–Kronig analysis, facilitating the rapid calculation of the complex refractive index function (1).
This method achieves remarkable speed, running approximately two orders of magnitude faster than iterative approaches and completing within seconds on standard office PCs. The team validated their technique using various ATR crystals, including diamond, Zinc Selenide (ZnSe), and Germanium (Ge), along with different ATR accessories. Furthermore, they demonstrated its efficacy in correcting spectra of octadecane, highlighting its versatility across diverse samples (1).
The researchers also conducted rigorous simulations to assess potential sources of error, such as incidence angle spread and polarization angle dispersion (1). By addressing these factors, they ensured the reliability and accuracy of their correction scheme, positioning it as a superior alternative to existing methods.
Traditional methods of correcting infrared attenuated total reflection (ATR) spectra to resemble transmission spectra have long been hindered by several challenges (1–3). A key issue lies in the discrepancy between ATR and transmission spectra, where ATR introduces alterations in peak positions, peak intensities, and peak shapes, particularly pronounced at lower wavenumbers. This discrepancy stems from differences in effective thickness and penetration depth, influenced by the refractive index, leading to shifts in absorbance band maxima and significant changes in infrared spectral band shapes. While high-index ATR crystal materials and increased angles of incidence can mitigate some of these effects, they often sacrifice sensitivity and fail to fully eliminate ATR distortions. Additionally, the critical angle requirement for ATR spectroscopy imposes limitations on the types of samples that can be analyzed, further complicating the correction process (1–3).
Read More: Multicomponent Search and Advanced ATR Correction
This innovation achieved by Mayerhöfer, Costa, and Popp represents a significant advancement in ATR correction methodology. By streamlining the process and eliminating iterative complexities, their approach not only enhances efficiency but also preserves precision, crucial for reliable spectral analysis. With its wide applicability and robust performance, this advanced method is poised to provide a new tool for infrared spectroscopy, opening potentially new applications for ATR-based research, discovery, and routine laboratory and process analysis.
Through rigorous experimentation and thorough error analysis, the researchers have laid a solid theoretical and practical foundation for future advancements in spectroscopic techniques. Their work underscores the importance of continual innovation in analytical chemistry, driving progress towards more efficient, sustainable, and accurate methods for general analysis and scientific inquiry.
References
(1) Mayerhöfer, T. G.; Costa, W. D. P.; Popp, J. Sophisticated Attenuated Total Reflection Correction Within Seconds for Unpolarized Incident Light at 45°. Appl. Spectrosc. 2024, 78 (3), 321–328. DOI: 10.1177/00037028231219528
(2) Sobieski, B.; Chase, B.; Noda, I.; Rabolt, J. Artifact Correction in Temperature-Dependent Attenuated Total Reflection Infrared (ATR-IR) Spectra. Appl. Spectros. 2017, 71 (8), 1868–1875. DOI: 10.1177/0003702817690408
(3) Perera, U. D. N.; Nishikida, K.; Lavine, B. K. Development of Infrared Library Search Prefilters for Automotive Clear Coats from Simulated Attenuated Total Reflection (ATR) Spectra. Appl. Spectrosc. 2018, 72 (6), 886–895. DOI: 10.1177/0003702818759664
Best of the Week: AI and IoT for Pollution Monitoring, High Speed Laser MS
April 25th 2025Top articles published this week include a preview of our upcoming content series for National Space Day, a news story about air quality monitoring, and an announcement from Metrohm about their new Midwest office.
LIBS Illuminates the Hidden Health Risks of Indoor Welding and Soldering
April 23rd 2025A new dual-spectroscopy approach reveals real-time pollution threats in indoor workspaces. Chinese researchers have pioneered the use of laser-induced breakdown spectroscopy (LIBS) and aerosol mass spectrometry to uncover and monitor harmful heavy metal and dust emissions from soldering and welding in real-time. These complementary tools offer a fast, accurate means to evaluate air quality threats in industrial and indoor environments—where people spend most of their time.
New AI Strategy for Mycotoxin Detection in Cereal Grains
April 21st 2025Researchers from Jiangsu University and Zhejiang University of Water Resources and Electric Power have developed a transfer learning approach that significantly enhances the accuracy and adaptability of NIR spectroscopy models for detecting mycotoxins in cereals.
AI Shakes Up Spectroscopy as New Tools Reveal the Secret Life of Molecules
April 14th 2025A leading-edge review led by researchers at Oak Ridge National Laboratory and MIT explores how artificial intelligence is revolutionizing the study of molecular vibrations and phonon dynamics. From infrared and Raman spectroscopy to neutron and X-ray scattering, AI is transforming how scientists interpret vibrational spectra and predict material behaviors.