This study is an important contribution to the field of machine learning-enabled NIR spectroscopy, offering researchers a systematic method for selecting representative subsamples from existing data with quality measures, diagnostic tools, and visualization techniques.
Researchers from Graz University of Technology and Christ University have presented a systematic method for choosing representative subsamples from existing research with an extensive set of quality measures and a visualization strategy. In their article, published in AAPS PharmSciTech, Amrit Paudel and Gobi Ramasamy describe the systematic and structured procedure for selecting subsamples from the historical data (1). They offer a wide range of in-depth quality measures, diagnostic tools, and visualization techniques.
Artificial intelligence (AI), machine learning and modern computer technologies concepts. Business, Technology, Internet and network concept. | Image Credit: © putilov_denis - stock.adobe.com
The study used an open-source tablet data set that consists of different doses in milligrams, different shapes, and sizes of dosage forms, slots in tablets, three different manufacturing scales (laboratory, pilot, production), coating differences (coated vs. uncoated), and more. The model was developed on one scale, and the researchers investigated how well the top models are transferable when tested on new data like pilot-scale or production (full) scale.
The researchers demonstrated the selection of appropriate hyperparameters and their impact on the artificial neural network-multilayer perceptron (ANN-MLP) model performance. The choice of hyperparameter tuning approaches and performance with available references are discussed for the data under investigation. The model extension from laboratory-scale to pilot-scale was successfully demonstrated.
ANN-MLP is a type of artificial neural network that is widely used for supervised learning. It is a feedforward neural network with multiple layers of neurons, including an input layer, one or more hidden layers, and an output layer. Each neuron in the network receives input from the previous layer, performs a mathematical operation on the input, and then passes the result to the next layer. ANN-MLP is used for a variety of applications such as database exploration, calibration modeling, image recognition, speech recognition, and natural language processing.
Near-infrared (NIR) spectroscopy is non-destructive and non-intrusive, requires little to no sample preparation, and its overall analysis time may be considerably reduced, making it an ideal real-time analytical tool. This technique is used primarily in the pharmaceutical, agriculture, food and dairy, cosmetics, pulp and paper, and precision medicine industries.
Derivatization, normalization, scatter correction, and advanced approaches are a few of the data pre-processing techniques used to conceal physical information and retrieve chemically related information from NIR data. Modelling is employed after physical/chemical information has been segmented. Principal component regression (PCR) and partial least squares regression (PLS) are used in multivariate linear models.
This study is an important contribution to the field of machine learning-enabled NIR spectroscopy, offering researchers a systematic method for selecting representative subsamples from existing data with quality measures, diagnostic tools, and visualization techniques. The research provides a framework for choosing appropriate hyperparameters and demonstrates the extension of models from laboratory-scale to pilot-scale.
(1) Ali, H.; Muthudoss, P.; Ramalingam, M.; Kanakaraj, L.; Paudel, A.; Ramasamy, G. Machine Learning–Enabled NIR Spectroscopy. Part 2: Workflow for Selecting a Subset of Samples from Publicly Accessible Data. AAPS PharmSciTech. 2023, 24, 34. https://link.springer.com/article/10.1208/s12249-022-02493-5
Exoplanet Discovery Using Spectroscopy
March 26th 2025Recent advancements in exoplanet detection, including high-resolution spectroscopy, adaptive optics, and artificial intelligence (AI)-driven data analysis, are significantly improving our ability to identify and study distant planets. These developments mark a turning point in the search for habitable worlds beyond our solar system.
Using Spectroscopy to Reveal the Secrets of Space
March 25th 2025Scientists are using advanced spectroscopic techniques to probe the universe, uncovering vital insights about celestial objects. A new study by Diriba Gonfa Tolasa of Assosa University, Ethiopia, highlights how atomic and molecular physics contribute to astrophysical discoveries, shaping our understanding of stars, galaxies, and even the possibility of extraterrestrial life.
New Telescope Technique Expands Exoplanet Atmosphere Spectroscopic Studies
March 24th 2025Astronomers have made a significant leap in the study of exoplanet atmospheres with a new ground-based spectroscopic technique that rivals space-based observations in precision. Using the Exoplanet Transmission Spectroscopy Imager (ETSI) at McDonald Observatory in Texas, researchers have analyzed 21 exoplanet atmospheres, demonstrating that ground-based telescopes can now provide cost-effective reconnaissance for future high-precision studies with facilities like the James Webb Space Telescope (JWST) (1-3).