Fourier transform–infrared (FT-IR) spectroscopy technology has progressed considerably over the past two decades, and it is now a relatively established analytical technique for process monitoring in addition to being a standard tool in the laboratory. The inherent design of FT-IR systems makes them preferable for use as a process monitoring and analysis tool, particularly in the life science industries, which is a promising market.
Fourier transform–infrared (FT-IR)spectroscopy technology has progressed considerably over the past two decades, and it is now a relatively established analytical technique for process monitoring in addition to being a standard tool in the laboratory. The inherent design of FT-IR systems makes them preferable for use as a process monitoring and analysis tool, particularly in the life science industries, which is a promising market.
Process FT-IR life science vendor share
The core of any FT-IR instrument is the interferometer, which by its very nature provides its own internal calibration. The ability to eliminate the need for external calibration is obviously a major advantage for process instrumentation. In addition, FT- IR provides much higher signal-to-noise ratios in comparison to dispersive IT, which allows for much more rapid analysis.
The process life science market for FT-IR includes pharmaceutical, agriculture & food, and organic chemicals industries. The best known application is probably reaction monitoring, a significant portion of which falls under the definition of process analytical technology (PAT) in the pharmaceutical industry. FT-IR is also useful for identifying the level of key nutritional components in foods. The combined worldwide market for these applications for process FT-IR is estimated to be $20 million, and it is expected to see double-digit growth for some time to come.
The foregoing data were based on SDi's Market Analysis & Perspectives (MAP) report program. For more information, contact Stuart Press, Senior Consultant, Strategic Directions International, Inc., 6242 Westchester Parkway, Suite 100, Los Angeles, CA 90045, (310) 641-4982, fax: (310) 641-8851, www.strategic-directions.com.
FT-IR Spectroscopy for Microplastic Classification
December 19th 2024A new study in Infrared Physics & Technology highlights the pivotal role of Fourier transform infrared (FTIR) spectroscopy in identifying and quantifying microplastics, emphasizing its advantages, limitations, and potential for advancement in mitigating environmental pollution.
Advances in Mid-Infrared Imaging: Single-Pixel Microscopy Modernized with Quantum Lasers
December 10th 2024Scientists have developed a novel and creative mid-infrared (MIR) hyperspectral microscope using single-pixel imaging (SPI) technology and a quantum cascade laser (QCL). This innovation offers faster, more cost-effective chemical analysis compared to traditional methods, promising new frontiers in microscopic imaging.
The Advantages and Landscape of Hyperspectral Imaging Spectroscopy
December 9th 2024HSI is widely applied in fields such as remote sensing, environmental analysis, medicine, pharmaceuticals, forensics, material science, agriculture, and food science, driving advancements in research, development, and quality control.