Fourier transform–near infrared spectroscopy, generally referred to as FT-NIR, is a rapidly growing process analytical technique. The technique has a number of inherent advantages over other spectroscopy techniques for online monitoring, and is now used widely across a number of contrasting industries.
Fourier transform–near infrared spectroscopy, generally referred to as FT-NIR, is a rapidly growing process analytical technique. The technique has a number of inherent advantages over other spectroscopy techniques for online monitoring, and is now used widely across a number of contrasting industries.
The requirements of almost any online process instrument include reliability, rapid analysis, and consistent performance. An FT-NIR spectrometer relies on a much less complex mechanical design than traditional dispersive NIR instruments, which allows fewer opportunities for something to go wrong. FT-based spectroscopy instruments analyze the entire spectrum simultaneously, which is useful in analyzing continuous flows, or monitoring changing mixtures. NIR also tends to be better for quantitation, whereas mid-infrared spectroscopy generally is more suited to qualitative analyses, although there are numerous exceptions to both.
Process FT-NIR Industrial Demand
Although process FT-NIR is applied significantly across a number of contrasting industries, it is in the petroleum and hydrocarbon processing industry where it is by far most heavily used. All of the inherent advantages of the technique are needed to monitor various refinery processes in real-time, which is even more important given health and safety concerns in such facilities. The global market for process FT-NIR was worth over $50 million in 2007, and should see double-digit growth, thanks to increased activity in the petroleum and biofuels industry, as well as continued strong growth in the pharmaceutical industry.
The foregoing data were based on SDi's Market Analysis and Perspectives (MAP) Report program. For more information, contact Stuart Press, Vice President — Strategic Analysis, Strategic Directions International, Inc., 6242 Westchester Parkway, Suite 100, Los Angeles, CA 90045; (310) 641-4982, fax: (310) 641-8851, www.strategic-directions.com.
New SERS-Microfluidic Platform Classifies Leukemia Using Machine Learning
January 14th 2025A combination of surface-enhanced Raman spectroscopy (SERS) and machine learning on microfluidic chips has achieved an impressive 98.6% accuracy in classifying leukemia cell subtypes, offering a fast, highly sensitive tool for clinical diagnosis.
Advancing Soil Carbon Analysis Post-Wildfire with Spectroscopy and Machine Learning
January 14th 2025Researchers from the University of Oviedo used diffuse reflectance spectroscopy (DRS) and machine learning (ML) to analyze post-wildfire soil organic carbon fractions, identifying key spectral regions and algorithms for advancing remote sensing applications.
Oligonucleotide Analysis in Pharmaceutical Quality Control
January 14th 2025Melting point determination using ultraviolet-visible (UV-Vis) spectrophotometry can be used as a sequence-specific method for identifying therapeutic oligonucleotides in pharmaceutical quality control. This method offers a simple, highly selective approach to differentiate between isomers and ensure the integrity of oligonucleotide active pharmaceutical ingredients (APIs) and drug products.
The Optical Properties of Solid Samples
January 14th 2025Transmittance and reflectance measurements, which are useful for estimating the effects of various physical processes, can include thermal treatments, ionizing radiation exposure, optical exposure, and mechanical treatments—on both crystals and thin films.