High-resolution X-ray and infrared analyses of a tiny paint fragment from the Mona Lisa's ground layer uncovered Leonardo da Vinci's use of a unique mixture of saponified oil with high lead content, including the presence of the rare compound plumbonacrite, offering new insights into the artistic techniques and materials employed by the master.
In a study published in the Journal of the American Chemical Society, researchers from Université Paris-Saclay, led by corresponding author Victor Gonzalez, unveiled the hidden secrets of Leonardo da Vinci's palette through the examination of a microsample from the ground layer of the world-famous painting, the Mona Lisa. This analysis sheds new light on the techniques and materials used by the Renaissance master.
The research, conducted through high-angular resolution synchrotron X-ray diffraction and micro Fourier transform infrared spectroscopy (FT-IR), offered an unprecedented glimpse into the composition of the painting's ground layer.
The microsample revealed a unique combination of strongly saponified oil with a high lead content, along with a cerussite-depleted lead white pigment. Most notably, the presence of plumbonacrite, a rare compound stable only in an alkaline environment, left a remarkable signature. It suggests that Leonardo da Vinci had embarked on a quest to create a thick paint suitable for covering the wooden panel of the Mona Lisa. He achieved this by treating the oil with a significant load of lead II oxide (PbO).
What makes this discovery all the more intriguing is the ambiguity in Leonardo's manuscripts concerning the use of PbO. The analysis of fragments from another masterpiece, the Last Supper, further substantiates that PbO was indeed a part of Leonardo's palette. The team detected both litharge (α-PbO) and massicot (β-PbO), along with plumbonacrite and shannonite (Pb2OCO3), marking the first-ever detection of the latter in a historical painting.
The researchers sampled a tiny paint fragment from the hidden barb of the ground layer in the upper right zone of the Mona Lisa, concealed by the frame. The sample was embedded in resin for microscopic studies, and a smaller fragment was preserved unembedded in a glass capillary for synchrotron radiation high-angular resolution X-ray powder diffraction (SR-HR-XRPD).
For the analysis of fragments from the Last Supper, the research team employed synchrotron radiation-based attenuated total reflectance micro Fourier transform (ATR-μ-FTIR) and micro X-ray powder diffraction (SR-μ-XRPD) techniques. These revealed a comprehensive view of the materials used in this iconic artwork.
The discovery of plumbonacrite in the Mona Lisa's ground layer represents a significant leap forward in understanding Leonardo's artistic techniques. It not only adds to our knowledge of his palette but also deepens our appreciation of the genius behind the enigmatic smile of the world's most famous painting.
This groundbreaking research reaffirms that, even centuries after their creation, Leonardo's masterpieces continue to reveal new facets of his artistic brilliance.
This article was written with the help of artificial intelligence and has been edited to ensure accuracy and clarity. You can read more about our policy for using AI here.
Reference
Gonzalez, V.; Wallez, G.; Ravaud, E.; Eveno, M.; Fazlic, I.; Fabris, T.; Nevin, A.; Calligaro, T.; Menu, M.; Delieuvin, V.; Cotte, M. X-ray and Infrared Microanalyses of Mona Lisa’s Ground Layer and Significance Regarding Leonardo da Vinci’s Palette. J. Am. Chem. Soc. 2023, April 9, 2023. DOI: 10.1021/jacs.3c07000
The Big Review III: Molecular Vibration Theory
January 2nd 2025It has occurred to me that, in the 10+ years I have been writing about molecular vibrations, I have never introduced my readers to its basic theory! I will rectify that now. Some of this is new material, and some will be review. Either way, it is important that all this material be covered in one place.
ATR FT-IR: A New Vision on Protein Structure and Aggregation
December 17th 2024A recent study by researchers from the University of Belgrade highlights the transformative potential of attenuated total reflectance Fourier transform infrared (ATR-FT-IR) spectroscopy for analyzing protein structures. This versatile method not only provides insights into secondary structures but also excels at tracking aggregation processes, offering advantages over traditional techniques like X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy.
Measuring Microplastics in Remote and Pristine Environments
December 12th 2024Aleksandra "Sasha" Karapetrova and Win Cowger discuss their research using µ-FTIR spectroscopy and Open Specy software to investigate microplastic deposits in remote snow areas, shedding light on the long-range transport of microplastics.
Advances in Mid-Infrared Imaging: Single-Pixel Microscopy Modernized with Quantum Lasers
December 10th 2024Scientists have developed a novel and creative mid-infrared (MIR) hyperspectral microscope using single-pixel imaging (SPI) technology and a quantum cascade laser (QCL). This innovation offers faster, more cost-effective chemical analysis compared to traditional methods, promising new frontiers in microscopic imaging.