A team of researchers from Gannan Normal University and the Central Blood Station of Ganzhou City in Jiangxi Province, China, conducted a study using the GaiaSorter "Gaia" hyperspectral sorter to analyze plasma samples. This advanced technology extracts 254 spectral bands of near-infrared (NIR) plasma hyperspectral images, from 900 nm to 1700 nm, allowing for precise analysis of the blood's spectral characteristics (1).
The study, titled "Detection of Chylous Plasma Based on Machine Learning and Hyperspectral Techniques," was led by Yafei Liu and his colleagues and published in the journal Applied Spectroscopy. The researchers used four different machine learning algorithms to classify the NIR hyperspectral plasma images: decision tree, Gaussian Naive Bayes (GaussianNB), perceptron, and stochastic gradient descent (1).
Transfusing chylous blood contains high levels of fat, often due to an obesity in blood donors, and poses significant health risks to transfusion patients. One of the most serious dangers to blood recipients is fat embolism, where fat droplets form clots that can block blood flow in vital areas such as the lungs, leading to respiratory distress or even death. The high fat content can also trigger severe allergic reactions, causing swelling, difficulty breathing, and a sudden drop in blood pressure, potentially resulting in life-threatening anaphylaxis. Additionally, the increased viscosity from the fat can elevate blood pressure, strain the heart, and increase the risk of heart attack or stroke (2).
Moreover, transfusing chylous blood can lead to febrile reactions, with symptoms like fever and chills, and can trigger inflammation, damaging various organs. This inflammation can reduce organ function and lead to conditions like hypoxia, where tissues receive insufficient oxygen. Given these risks, ensuring that chylous blood is not used in transfusions is critical for patient safety. The use of advanced techniques, such as hyperspectral imaging and machine learning, can help accurately identify chylous blood, reducing the risks of adverse reactions during blood transfusions. Spectroscopy has recently been recommended as a means for rapid and non-destructive analysis of blood samples in multiple applications (3)
Read More: Childhood Obesity Serum Samples Analyzed Using Fourier Transform Infrared Spectroscopy
Traditionally, identifying chylous blood has been a time-consuming process, but new research shows that hyperspectral imaging and machine learning could revolutionize the detection process.
Initially, the researchers compared the classification accuracies of these algorithms with the original data. They found that the decision tree and GaussianNB models performed best, achieving average accuracies of over 90%. The team then applied feature dimension reduction to the data, focusing on the most relevant spectral bands, which improved the accuracy of the decision tree model to 93.33% (1).
In the study's final analysis, the researchers concluded that the decision tree and GaussianNB models consistently provided the most accurate results. The feature dimension reduction method allowed them to identify seven key bands that were most effective for detecting chylous blood. These near-infrared bands were at wavelengths 962.93, 1122.37, 1338.87, 1380.21, 1558.16, 1656.56, and 1697.8 nm (1).
Overall, the study suggests that chylous plasma can be identified quickly and accurately using these methods, potentially reducing wasted blood resources and increasing the efficiency of blood donation centers. However, the researchers noted that their study used a limited number of samples, which could affect the generalizability of their results. They recommend further studies with larger datasets to optimize the model parameters and strengthen the reliability of the findings (1).
This breakthrough in hyperspectral imaging when combined with machine learning technology offers a promising solution to a critical medical challenge. With continued research and refinement, this technique could become a standard tool in blood donation centers, ensuring that chylous blood is identified and removed from the transfusion pool, thereby safeguarding patient health.
References
New Spectroscopy Method Shows Promise for Detecting Olive Oil Fraud
November 12th 2024Researchers from the University of Cordoba have validated a novel spectroscopy technique to help distinguish between extra virgin and virgin olive oils. This approach could support existing panel-based tests, which are often slow, costly, and subjective, by providing a faster, non-destructive screening option.
NIR, IR, UV-vis, and NMR Spectroscopy Drive New Insights in Olive Oil Quality and Fraud Prevention
November 11th 2024A new review highlights the promising role of non-destructive spectroscopy techniques in enhancing olive and extra virgin olive oil (EVOO) quality assessments. By combining spectroscopy with imaging, researchers uncover innovative ways to determine product authenticity and improve quality control in olive oil production.
New Study Highlights Abnormal Connectivity in Prefrontal Cortex of MCI Patients
November 6th 2024A recent study published in Frontiers in Aging Neuroscience by Wenyu Jiang and colleagues in China found that patients with mild cognitive impairment (MCI) exhibit abnormal functional connectivity in the right prefrontal cortex as revealed by fNIRS, highlighting potential cognitive implications and the protective role of education.
Breaking Spectral Boundaries: New Ultrafast Spectrometer Expands Detection Range for NIR Studies
October 29th 2024A team from Auburn University has developed an innovative ultrabroadband near-infrared (NIR) transient absorption (TA) spectrometer capable of detecting across a wide spectral range of 900–2350 nm in a single experiment. This advancement improves the study of ultrafast processes in low-bandgap materials and opens doors to new insights in photochemistry and charge dynamics.