Application Notebook
This application brief will give an overview of a published article (1) that describes the analytical capabilities of the NexION? 300X ICP-MS coupled to the prepFAST? in-line, auto-dilution/auto-calibration sample delivery system to determine a suite of toxicologically-relevant elements in a group of four pharmaceutical products using the new USP Chapters <232> and <233>, which have replaced the 100-year old sulfide-based method described in Chapter <231>.
This application brief will give an overview of a published article (1) that describes the analytical capabilities of the NexION® 300X ICP-MS coupled to the prepFAST™ in-line, auto-dilution/auto-calibration sample delivery system to determine a suite of toxicologically-relevant elements in a group of four pharmaceutical products using the new USP Chapters <232> and <233>, which have replaced the 100-year old sulfide-based method described in Chapter <231>.
Chapter <232> specifies the list of elemental impurities (Cd, Pb, As, Hg, In, Os, Pd, Pt, Rh, Ru, Cr, Mo, Ni, V, Cu) and their toxicity limits, defined as maximum daily doses of the four different drug administration categories — oral, parenteral (intravenous injection), inhalation, and large volume parenteral — whereas Chapter <233> deals with the sample preparation, analytical procedure, and QC validation protocol for measuring the elements using ICP-AES or ICP-MS.
The objective of this study was to evaluate the capability of the NexION 300X ICP–MS coupled with the prepFAST (Elemental Scientific Inc., Omaha, Nebraska) to determine the complete suite of elements defined in Chapter <232> in a group of pharmaceutical products according to USP Chapter <233> using a variety of sample preparation techniques, including simple dilution and microwave digestion.
Elemental target limits, known as "J" values in the USP method, are defined as the acceptance value for the elemental impurities, based on the weight, number of doses, and frequency of taking the drug. For that reason, calibration must be carried out using two matrix-matched calibration standards and a matrix-matched blank. For each element the high standard is twice (2J) the target limit and the low standard is half (0.5J) the target limit.
All four medications were analyzed for their trace element concentrations. Table I shows the four heavy metal contaminants found in one of the oral medications, together with spike recoveries at 80% of the target limits and method detection limits in the original sample. For the complete set of results and QC/QA data generated in this study, please refer to the published paper (1).
Table I
This is just a brief look at the drug products analyzed in the referenced published paper. However, the method showed it was capable of generating detection limits, spike recoveries, precision, ruggedness, and stability data of the highest quality. The benefit of ICP-MS is that it is sensitive enough to be applied to the analysis of any pharmaceutical or nutraceutical material irrespective of the sample preparation requirements.
(1) L. Davidowski, A. Shultz, K. Uhlmeyer, E. Pruszkowski, and R. Thomas, Applications of ICP & ICP–MS Techniques for Today's Spectroscopists, supplement to Spectroscopy, November, 8-17, (2012)
PerkinElmer, Inc.
940 Winter Street, Waltham, MA 02451
tel. (800) 762-4000 or (203) 925-4602
Website: www.perkinelmer.com
Pittcon 2025: Highlighting Talks on Atomic Spectroscopy
February 26th 2025At Pittcon this year, there will be numerous sessions dedicated to spotlighting the latest research that uses atomic spectroscopy or elemental analysis techniques. We highlight some of these talks below that might pique the interest of spectroscopists and researchers attending the conference this year.
The 2025 Emerging Leader in Atomic Spectroscopy Award
February 15th 2025Benjamin T. Manard has won the 2025 Emerging Leader in Atomic Spectroscopy Award for his pioneering research in nuclear material characterization and isotope ratio analysis, with expertise in advanced atomic spectrometry techniques such as inductively coupled plasma optical emission spectroscopy (ICP-OES), inductively coupled plasma mass spectrometry (ICP-MS), and laser ablation.
Applications of Micro X-Ray Fluorescence Spectroscopy in Food and Agricultural Products
January 25th 2025In recent years, advances in X-ray optics and detectors have enabled the commercialization of laboratory μXRF spectrometers with spot sizes of ~3 to 30 μm that are suitable for routine imaging of element localization, which was previously only available with scanning electron microscopy (SEM-EDS). This new technique opens a variety of new μXRF applications in the food and agricultural sciences, which have the potential to provide researchers with valuable data that can enhance food safety, improve product consistency, and refine our understanding of the mechanisms of elemental uptake and homeostasis in agricultural crops. This month’s column takes a more detailed look at some of those application areas.
Best of the Week: Seed Vigor, Flower Classification, Emerging Leader in Atomic Spectroscopy
January 10th 2025Top articles published this week include two peer-reviewed articles that explore optical detection technology for seed vigor and classifying flowers, as well as a profile on Benjamin Manard, who was recognized as the winner of the 2025 Emerging Leader in Atomic Spectroscopy.