Researchers have conducted a preliminary study on the potential use of near-infrared (NIR) and Raman spectroscopy for predicting ice cream mix viscosity. The study highlights the promising performance of NIR spectroscopy and serves as a starting point for further investigations into in situ application of these analytical tools in the ice cream manufacturing process.
Many of us may not think about the viscosity of the ice cream we consume regularly, but it is usually an important indicator of the quality of the ice cream (1). The viscosity can affect certain characteristics about ice cream, including its texture (1). But how do we measure viscosity, and what is the best way to do so?
strawberry, vanilla, chocolate ice cream woth waffle cone on marble stone backgrounds | Image Credit: © ahirao - stock.adobe.com
In a recent study published in Applied Spectroscopy, researchers from the University of Manchester and Unilever R&D Colworth Science Park set out to answer this question (1). In particular, they investigated whether spectroscopic techniques such as near-infrared (NIR) and Raman spectroscopy can assess the viscosity of ice cream mixes (1). The results are encouraging, and because partial least squares regression (PLSR) can develop predictive models for viscosity analysis, the researchers were able to determine to what extent NIR and Raman spectroscopy can be used feasibly as analytical tools to assess viscosity (1).
Traditionally, viscosity measurements have been conducted offline using methods like rheometry (1). However, this study focused on developing PLSR models by analyzing spectral data obtained from NIR and Raman spectroscopic methods (1). The first step was to create a range of viscosity values. To accomplish this step, ice cream mixes were prepared with varying fat content, and they were also subjected to different homogenization conditions (1). The individual PLSR models demonstrated some predictive ability and outperformed the integrated model derived from data fusion (1).
The study results revealed that NIR spectroscopy was the better technique over Raman to be used for viscosity analysis (1). This was because NIR spectroscopy exhibited lower prediction errors and higher coefficients of determination (1). However, it is important to note that additional factors, such as implementation limits, can influence which method should be utilized (1).
Although this study provides a preliminary comparison of spectroscopic methods for quantitatively assessing the viscosity of aged ice cream mixes, it also serves as a starting point for future in situ application studies. The potential of NIR and Raman spectroscopy as nondestructive and real time techniques holds promise for enhancing the efficiency of viscosity analysis in the ice cream manufacturing process (1).
By exploring these spectroscopic tools, researchers aim to enable more rapid and accurate viscosity measurements, leading to improved process control and the ability to adjust formulations on the fly, ultimately enhancing the quality and consistency of ice cream products in the food industry (1).
(1) Cruz, C.; Arafeh, A.; Martin, P. A.; Fonte, C. P.; De Simone, A.; Oppong, F. K.; Jeatt, W.; Rodgers, T. L.Assessment of Near-Infrared and Raman Spectroscopy as Analytical Tools to Predict Viscosity of Ice Cream Mixes. Appl. Spectrosc. 2023, ASAP. DOI: 10.1177/00037028231176824
AI-Powered SERS Spectroscopy Breakthrough Boosts Safety of Medicinal Food Products
April 16th 2025A new deep learning-enhanced spectroscopic platform—SERSome—developed by researchers in China and Finland, identifies medicinal and edible homologs (MEHs) with 98% accuracy. This innovation could revolutionize safety and quality control in the growing MEH market.
New Raman Spectroscopy Method Enhances Real-Time Monitoring Across Fermentation Processes
April 15th 2025Researchers at Delft University of Technology have developed a novel method using single compound spectra to enhance the transferability and accuracy of Raman spectroscopy models for real-time fermentation monitoring.
Karl Norris: A Pioneer in Optical Measurements and Near-Infrared Spectroscopy, Part I
April 15th 2025In this "Icons of Spectroscopy" column, executive editor Jerome Workman Jr. details how Karl H. Norris has impacted the analysis of food, agricultural products, and pharmaceuticals over six decades. His pioneering work in optical analysis methods including his development and refinement of near-infrared (NIR) spectroscopy has transformed analysis technology. This Part I article of a two-part series introduces Norris’ contributions to NIR.