Canadian researchers at the Bloorview Research Institute (Toronto, ON, Canada) and the University of Toronto have developed a way to use optical imaging to decode preference by measuring the intensity of near-infrared light absorbed in brain tissue.
Canadian researchers at the Bloorview Research Institute (Toronto, ON, Canada) and the University of Toronto have developed a way to use optical imaging to decode preference by measuring the intensity of near-infrared light absorbed in brain tissue. Brain–computer interface (BCI) systems like this could enable people with severe or multiple disabilities to communicate and control external devices via thought alone.
The system is based on the use of near-infrared spectroscopy (NIRS) to study cerebral hemodynamics during the decision-making process. NIRS has been investigated before as a non-invasive tool for reading thoughts. But previous NIRS-BCI setups required user training. For example, to indicate “yes” to a question, a subject would need to perform a specific unrelated task, such as a mental calculation. The key difference in this latest system is that the BCI is trained to directly decode neural signatures corresponding to specific decisions. Because no secondary task is required to indicate preference, the design should be more intuitive to use, decreasing the cognitive load required to operate the interface and removing the need to train the user.
New Spectroscopy Method Shows Promise for Detecting Olive Oil Fraud
November 12th 2024Researchers from the University of Cordoba have validated a novel spectroscopy technique to help distinguish between extra virgin and virgin olive oils. This approach could support existing panel-based tests, which are often slow, costly, and subjective, by providing a faster, non-destructive screening option.
NIR, IR, UV-vis, and NMR Spectroscopy Drive New Insights in Olive Oil Quality and Fraud Prevention
November 11th 2024A new review highlights the promising role of non-destructive spectroscopy techniques in enhancing olive and extra virgin olive oil (EVOO) quality assessments. By combining spectroscopy with imaging, researchers uncover innovative ways to determine product authenticity and improve quality control in olive oil production.
New Study Highlights Abnormal Connectivity in Prefrontal Cortex of MCI Patients
November 6th 2024A recent study published in Frontiers in Aging Neuroscience by Wenyu Jiang and colleagues in China found that patients with mild cognitive impairment (MCI) exhibit abnormal functional connectivity in the right prefrontal cortex as revealed by fNIRS, highlighting potential cognitive implications and the protective role of education.
Breaking Spectral Boundaries: New Ultrafast Spectrometer Expands Detection Range for NIR Studies
October 29th 2024A team from Auburn University has developed an innovative ultrabroadband near-infrared (NIR) transient absorption (TA) spectrometer capable of detecting across a wide spectral range of 900–2350 nm in a single experiment. This advancement improves the study of ultrafast processes in low-bandgap materials and opens doors to new insights in photochemistry and charge dynamics.