Canadian researchers at the Bloorview Research Institute (Toronto, ON, Canada) and the University of Toronto have developed a way to use optical imaging to decode preference by measuring the intensity of near-infrared light absorbed in brain tissue.
Canadian researchers at the Bloorview Research Institute (Toronto, ON, Canada) and the University of Toronto have developed a way to use optical imaging to decode preference by measuring the intensity of near-infrared light absorbed in brain tissue. Brain–computer interface (BCI) systems like this could enable people with severe or multiple disabilities to communicate and control external devices via thought alone.
The system is based on the use of near-infrared spectroscopy (NIRS) to study cerebral hemodynamics during the decision-making process. NIRS has been investigated before as a non-invasive tool for reading thoughts. But previous NIRS-BCI setups required user training. For example, to indicate “yes” to a question, a subject would need to perform a specific unrelated task, such as a mental calculation. The key difference in this latest system is that the BCI is trained to directly decode neural signatures corresponding to specific decisions. Because no secondary task is required to indicate preference, the design should be more intuitive to use, decreasing the cognitive load required to operate the interface and removing the need to train the user.
The Advantages and Landscape of Hyperspectral Imaging Spectroscopy
December 9th 2024HSI is widely applied in fields such as remote sensing, environmental analysis, medicine, pharmaceuticals, forensics, material science, agriculture, and food science, driving advancements in research, development, and quality control.
Portable and Wearable Spectrometers in Our Future
December 3rd 2024The following is a summary of selected articles published recently in Spectroscopy on the subject of handheld, portable, and wearable spectrometers representing a variety of analytical techniques and applications. Here we take a closer look at the ever shrinking world of spectroscopy devices and how they are used. As spectrometers progress from bulky lab instruments to compact, portable, and even wearable devices, the future of spectroscopy is transforming dramatically. These advancements enable real-time, on-site analysis across diverse industries, from healthcare to environmental monitoring. This summary article explores cutting-edge developments in miniaturized spectrometers and their expanding range of practical applications.
AI, Deep Learning, and Machine Learning in the Dynamic World of Spectroscopy
December 2nd 2024Over the past two years Spectroscopy Magazine has increased our coverage of artificial intelligence (AI), deep learning (DL), and machine learning (ML) and the mathematical approaches relevant to the AI topic. In this article we summarize AI coverage and provide the reference links for a series of selected articles specifically examining these subjects. The resources highlighted in this overview article include those from the Analytically Speaking podcasts, the Chemometrics in Spectroscopy column, and various feature articles and news stories published in Spectroscopy. Here, we provide active links to each of the full articles or podcasts resident on the Spectroscopy website.