A new method for detecting adulterated milk could lead to analyzing other food products more effectively.
Milk is a vital source of nutrients for human beings. However, milk adulteration is a persistent problem in many countries. It not only reduces the nutritional value of milk, but it can also has health risks to consumers. Therefore, the development of a simple, reliable, and rapid detection method for adulterated milk is of great significance (1). In a recent study published in Spectroscopy Letters, researchers Xin Li and Jiangping Liu proposed a novel method for analyzing adulterated milk based on a long short-term memory network (1).
The study involved the use of near-infrared (NIR) hyperspectral data to carry out qualitative and quantitative analysis of adulterated milk (1). The team used principal component analysis (PCA) combined with a long short-term memory network to identify the adulterated milk samples (1). The NIR hyperspectral data was collected in the range of 400–1000 nm (1).
The feasibility of the proposed method for identifying adulterated milk was proven by its high accuracy. The method had an average recognition rate of 99.5% for the test set and 98.5% for the validation set (1). The study also demonstrated that employing PCA and long short-term memory network was effective in reducing the dimensionality of the NIR hyperspectral data (1). This, in turn, helped improve analysis accuracy (1).
The researchers' proposed method offers several advantages over the existing methods. First, and according to the study, it is nondestructive, meaning that the milk samples can be reused after analysis (1). Second, the method is relatively simple, requiring only a small amount of milk and a hyperspectral analyzer (1). And finally, the method is efficient because the analysis can be completed within a few minutes (1). Therefore, the proposed method would be beneficial for supply chains and milk production facilities where this technique would be best applied to inspect the beverage for adulteration.
In summary, this study paves the way for the development of more efficient, reliable, and low-cost methods for detecting milk adulteration. The authors suggest that future studies can focus on the application of the proposed method in the analysis of other food products (1). In conclusion, the proposed method provides a practical and effective solution to the persistent problem of milk adulteration, ensuring the safety and quality of milk products for consumers.
(1) Li, X.; Liu, J. Analysis of Adulterated Milk Based on a Long Short-term Memory Network. Spec. Lett. 2023. DOI: 10.1080/00387010.2023.2194950
Exoplanet Discovery Using Spectroscopy
March 26th 2025Recent advancements in exoplanet detection, including high-resolution spectroscopy, adaptive optics, and artificial intelligence (AI)-driven data analysis, are significantly improving our ability to identify and study distant planets. These developments mark a turning point in the search for habitable worlds beyond our solar system.
Using Spectroscopy to Reveal the Secrets of Space
March 25th 2025Scientists are using advanced spectroscopic techniques to probe the universe, uncovering vital insights about celestial objects. A new study by Diriba Gonfa Tolasa of Assosa University, Ethiopia, highlights how atomic and molecular physics contribute to astrophysical discoveries, shaping our understanding of stars, galaxies, and even the possibility of extraterrestrial life.
New Telescope Technique Expands Exoplanet Atmosphere Spectroscopic Studies
March 24th 2025Astronomers have made a significant leap in the study of exoplanet atmospheres with a new ground-based spectroscopic technique that rivals space-based observations in precision. Using the Exoplanet Transmission Spectroscopy Imager (ETSI) at McDonald Observatory in Texas, researchers have analyzed 21 exoplanet atmospheres, demonstrating that ground-based telescopes can now provide cost-effective reconnaissance for future high-precision studies with facilities like the James Webb Space Telescope (JWST) (1-3).