A new rapid coal calorific value analyzer was developed by a research team that promises to optimize coal preparation plants' operations, improving efficiency, and enhancing economic benefits (1). In a recent study from the Journal of Analytical Atomic Spectroscopy, the study details the successful integration of near-infrared (NIR) spectroscopy and X-ray fluorescence (XRF) spectroscopy in the creation of this new technology for the coal industry (1).
The research highlighted in the study demonstrates the benefits of the analyzer. This value analyzer improves upon coal quality assessment, impacting industries like coal mining, washing, power generation, and coking.
The rapid NIR-XRF coal spectroscopic calorific value analyzer is a comprehensive system consisting of six core components: the NIRS module; XRF module; sample delivery module; control module; hydrogen production module; and operation software. Key to the analyzer's success is the introduction of a novel quantitative analysis algorithm based on partial least squares regression (PLSR), known as the holistic-segmented model (1).
The researchers tested the analyzer on four different types of product coals, including clean coal, middling coal, slime, and gangue, sourced from the daily production of the Duanshi coal preparation plant. They compared the results obtained from the analyzer to traditional chemical analysis results.
The analyzer outperformed its counterparts. The root mean square error of prediction (RMSEP), the average absolute error (AAE), and the average relative error (ARE) for the coal calorific value predictions using the holistic-segmented model showed a remarkable decrease (1). RMSEP decreased from 0.65 MJ/kg to 0.33 MJ/kg, AAE decreased from 0.55 MJ/kg to 0.28 MJ/kg, and ARE dropped from 4.71% to 2.71%, effectively cutting the errors in half (1).
Moreover, the average standard deviation (SD) decreased from 0.29 MJ/kg to 0.09 MJ/kg. These results reflect a substantial improvement in measurement accuracy and repeatability (1).
Notably, the analyzer's measurements exhibited consistency with traditional chemical analysis results, emphasizing its potential to become a crucial tool for the coal industry. In conclusion, the introduction of the rapid NIR-XRF coal calorific value analyzer offers a transformative approach to coal quality assessment, promising a cleaner, more efficient, and intelligent means of coal utilization (1).
This article was written with the help of artificial intelligence and has been edited to ensure accuracy and clarity. You can read more about our policy for using AI here.
(1) Gao, R.; Wang, S.; Li, J; et al. Development and application of a rapid coal calorific value analyzer based on NIRS-XRF. J. Anal. At. Spectrom. 2023, 38, 2046–2058. DOI: 10.1039/D3JA00197K
The Advantages and Landscape of Hyperspectral Imaging Spectroscopy
December 9th 2024HSI is widely applied in fields such as remote sensing, environmental analysis, medicine, pharmaceuticals, forensics, material science, agriculture, and food science, driving advancements in research, development, and quality control.
Portable and Wearable Spectrometers in Our Future
December 3rd 2024The following is a summary of selected articles published recently in Spectroscopy on the subject of handheld, portable, and wearable spectrometers representing a variety of analytical techniques and applications. Here we take a closer look at the ever shrinking world of spectroscopy devices and how they are used. As spectrometers progress from bulky lab instruments to compact, portable, and even wearable devices, the future of spectroscopy is transforming dramatically. These advancements enable real-time, on-site analysis across diverse industries, from healthcare to environmental monitoring. This summary article explores cutting-edge developments in miniaturized spectrometers and their expanding range of practical applications.
AI, Deep Learning, and Machine Learning in the Dynamic World of Spectroscopy
December 2nd 2024Over the past two years Spectroscopy Magazine has increased our coverage of artificial intelligence (AI), deep learning (DL), and machine learning (ML) and the mathematical approaches relevant to the AI topic. In this article we summarize AI coverage and provide the reference links for a series of selected articles specifically examining these subjects. The resources highlighted in this overview article include those from the Analytically Speaking podcasts, the Chemometrics in Spectroscopy column, and various feature articles and news stories published in Spectroscopy. Here, we provide active links to each of the full articles or podcasts resident on the Spectroscopy website.