Researchers from Zhejiang University in China have revealed the transformative potential of infrared (IR) and Raman spectroscopy techniques for rapidly and accurately assessing herb quality and safety, offering a promising path toward intelligent and eco-friendly herb industry development.
In a recent study published in Frontiers in Plant Science, researchers from the College of Biosystems Engineering and Food Science at Zhejiang University in Hangzhou, China, described the potential of infrared (IR) and Raman spectroscopy techniques for the assessment of herb quality and safety. Led by Rongqin Chen, Fei Liu, and Jing Huang, this research highlights the urgent need for innovative, rapid, and environmentally friendly methods to ensure the quality and safety of herbs in the modern herbal industry.
fresh herbs on wooden background with space for text | Image Credit: © Sunny Forest - stock.adobe.com
Herbs have long been utilized for their natural healing properties and culinary applications. As interest in their benefits continues to rise globally, the need for rigorous quality control and safety inspection has become paramount. Unlike synthetic drugs with well-defined ingredients, herbs are influenced by various factors, such as habitat, maturity, and processing methods, throughout the entire production process, from raw materials to patented herbal products.
Traditional methods of quality control, relying on subjective human knowledge or experience, are time-consuming and often lack quick responsiveness, hindering the digital transformation of the herbal industry. To address these challenges, the researchers explored the potential of IR and Raman spectroscopy, vibrational spectroscopy techniques capable of providing comprehensive chemical profiles of multiple compounds without causing damage. These techniques offer objective, high-speed, non-destructive analysis, making them invaluable tools in herb quality control and safety inspection.
The study showcases the application of IR and Raman spectroscopy techniques across the entire herb production process. This includes the analysis of herbal raw materials, quality control during processing, and the evaluation of patented herbal products. By providing a non-invasive and quick-response approach to characterizing the composition and content of herbal ingredients, these techniques promise to enhance the efficiency and accuracy of digital herb detection.
In addition to the advantages, the research also addresses the limitations of IR and Raman spectroscopy techniques. It offers valuable insights into improving digital detection methods for herb quality and safety, paving the way for intelligent and eco-friendly development within the herbal industry.
As herbs continue to play a vital role in healthcare and as functional food additives, ensuring their quality and safety is of paramount importance. The team not only highlights the potential of advanced spectroscopy techniques but also underscores the need for innovation in herb quality control to meet the growing demands of a global market.
(1) Chen, R.; Liu, F.; Zhang, C.; Wang, W.; Yang, R.; Zhao, Y.; Peng, J.; Kong, W.; Huang, J. Trends in Digital Detection for the Quality and Safety Assessment of Herbs Through Infrared and Raman Spectroscopy. Frontiers in Plant Science 2023, 14, 1128300. DOI: 10.3389/fpls.2023.1128300
This article was written with the help of artificial intelligence and has been edited to ensure accuracy and clarity. You can read more about our policy for using AI here.
New Study Provides Insights into Chiral Smectic Phases
March 31st 2025Researchers from the Institute of Nuclear Physics Polish Academy of Sciences have unveiled new insights into the molecular arrangement of the 7HH6 compound’s smectic phases using X-ray diffraction (XRD) and infrared (IR) spectroscopy.
Exoplanet Discovery Using Spectroscopy
March 26th 2025Recent advancements in exoplanet detection, including high-resolution spectroscopy, adaptive optics, and artificial intelligence (AI)-driven data analysis, are significantly improving our ability to identify and study distant planets. These developments mark a turning point in the search for habitable worlds beyond our solar system.
Using Spectroscopy to Reveal the Secrets of Space
March 25th 2025Scientists are using advanced spectroscopic techniques to probe the universe, uncovering vital insights about celestial objects. A new study by Diriba Gonfa Tolasa of Assosa University, Ethiopia, highlights how atomic and molecular physics contribute to astrophysical discoveries, shaping our understanding of stars, galaxies, and even the possibility of extraterrestrial life.