In a study published in the journal Plants, researchers from the Graduate Program in Agronomy at the State University of Maringá and the Department of Soil Science at the University of São Paulo in Brazil have delved into the integration of reflectance spectroscopy and artificial intelligence (AI) algorithms to enhance pigment phenotyping and classification in lettuce plants.
Led by Renan Falcioni, João Vitor Ferreira Gonçalves, Karym Mayara de Oliveira, Caio Almeida de Oliveira, José A. M. Demattê, Werner Camargos Antunes, and Marcos Rafael Nanni, the study explored the utilization of visible-near-infrared-shortwave-infrared (Vis-NIR-SWIR) hyperspectroscopy, also known as hyperspectral imaging or imaging spectroscopy,coupled with AI algorithms to classify eleven varieties of lettuce plants.
The team employed a spectroradiometer to collect hyperspectral data and applied 17 AI algorithms to accurately classify lettuce plants based on their pigment characteristics. The study found that the highest precision and accuracy were achieved using the full hyperspectral curves or specific spectral ranges, including 400–700 nm, 700–1300 nm, and 1300–2400 nm.
Remarkably, four machine learning (chemometric)models–AdB (adaptive boosting), CN2 (inductive model learner), G-Boo (gradient boosting), and NN (neural network)–demonstrated exceptional R2 (R-squared) and ROC (receiver operating characteristic), which are two different metrics used to evaluate the quality of models using multivariate analysis and machine learning, respectively.For the tested models, values exceeding 0.99 were achieved, emphasizing the potential of AI algorithms and hyperspectral fingerprints for precise classification and pigment phenotyping in agriculture (1).
Lettuce, a globally consumed vegetable with an estimated production of 27 million tons in 2022, presents various varieties with different pigments and antioxidant compounds. The rapid and accurate phenotyping of lettuce varieties holds significant importance for both traditional agriculture and modern vertical and indoor farming practices.
The integration of AI algorithms and hyperspectral technology, as demonstrated in this study, offers a promising approach to improving the accuracy and efficiency of crop classification. These advancements contribute to the development of more effective and sustainable agricultural practices, addressing challenges related to food production and waste.
The findings pave the way for further exploration of hyperspectroscopy and AI applications in precision agriculture, emphasizing the need for continued research to unlock the full potential of these technologies in diverse crop species and environmental conditions.
This collaborative effort between agronomy and AI showcases the transformative impact of interdisciplinary research, positioning spectroscopy and artificial intelligence as key tools in the advancement of modern farming practices.
This article was written with the help of artificial intelligence and has been edited to ensure accuracy and clarity. You can read more about our policy for using AI here.
(1) Falcioni, R.; Gonçalves, J. V. F.; de Oliveira, K. M.; de Oliveira, C. A.; Demattê, J. A. M.; Antunes, W. C.; Nanni, M. R. Enhancing Pigment Phenotyping and Classification in Lettuce through the Integration of Reflectance Spectroscopy and AI Algorithms. Plants 2023, 12 (6), 1333. DOI: 10.3390/plants12061333
Using Spectroscopy to Reveal the Secrets of Space
March 25th 2025Scientists are using advanced spectroscopic techniques to probe the universe, uncovering vital insights about celestial objects. A new study by Diriba Gonfa Tolasa of Assosa University, Ethiopia, highlights how atomic and molecular physics contribute to astrophysical discoveries, shaping our understanding of stars, galaxies, and even the possibility of extraterrestrial life.
New Telescope Technique Expands Exoplanet Atmosphere Spectroscopic Studies
March 24th 2025Astronomers have made a significant leap in the study of exoplanet atmospheres with a new ground-based spectroscopic technique that rivals space-based observations in precision. Using the Exoplanet Transmission Spectroscopy Imager (ETSI) at McDonald Observatory in Texas, researchers have analyzed 21 exoplanet atmospheres, demonstrating that ground-based telescopes can now provide cost-effective reconnaissance for future high-precision studies with facilities like the James Webb Space Telescope (JWST) (1-3).
Tomas Hirschfeld: Prolific Research Chemist, Mentor, Inventor, and Futurist
March 19th 2025In this "Icons of Spectroscopy" column, executive editor Jerome Workman Jr. details how Tomas B. Hirschfeld has made many significant contributions to vibrational spectroscopy and has inspired and mentored many leading scientists of the past several decades.