Dmitry Kurouski of Texas A&M University speaks to Spectroscopy Editor Patrick Lavery about Raman spectroscopy's role in determining crop yield of key food items as the world population continues to increase.
(1) Farber, C.; Kurouski, D. Raman Spectroscopy and Machine Learning for Agricultural Applications: Chemometric Assessment of Spectroscopic Signatures of Plants as the Essential Step Toward Digital Farming. Front. Plant. Sci. 2022, 13, 887511. DOI: 10.3389/fpls.2022.887511
Nanometer-Scale Studies Using Tip Enhanced Raman Spectroscopy
February 8th 2013Volker Deckert, the winner of the 2013 Charles Mann Award, is advancing the use of tip enhanced Raman spectroscopy (TERS) to push the lateral resolution of vibrational spectroscopy well below the Abbe limit, to achieve single-molecule sensitivity. Because the tip can be moved with sub-nanometer precision, structural information with unmatched spatial resolution can be achieved without the need of specific labels.
Tomas Hirschfeld: Prolific Research Chemist, Mentor, Inventor, and Futurist
March 19th 2025In this "Icons of Spectroscopy" column, executive editor Jerome Workman Jr. details how Tomas B. Hirschfeld has made many significant contributions to vibrational spectroscopy and has inspired and mentored many leading scientists of the past several decades.
Assessing Milk Protein Stability Using ATR-FT-IR Spectroscopy
March 18th 2025A study published in the International Journal of Dairy Technology by lead author Mark A. Fenelon and his team at Teagasc Food Research Centre and University College Dublin demonstrates that ATR-FT-IR spectroscopy can effectively monitor heat-induced structural changes in milk proteins and colloidal calcium phosphate, offering valuable insights for optimizing dairy product stability and quality.