Webinar Date/Time: Tue, Apr 11, 2023 1:00 PM EDT
This will be an overview of modern FT-IR spectrometry to demonstrate the collection of a complete spectrum within 10 ms in the rapid-scan mode. A few nanoseconds’ time resolution can be achieved for the repetitive reactions in the step-scan mode.
Register Free: https://www.spectroscopyonline.com/spec_w/time-resolved
Event Overview:
Infrared (IR) spectroscopy is highly specific for identifying chemical composition because each compound has a characteristic IR spectrum that serves as a “fingerprint” to uniquely identify the compound. This makes IR spectroscopy the widely used technique for monitoring changes in chemical composition during reactions. Modern FT-IR spectrometers collect a complete spectrum within 10 ms in the rapid-scan mode. A few nanoseconds time resolution can be achieved for repetitive reactions in the step-scan mode. An introduction to time-resolved FT-IR spectroscopy and optimization of the experimental setup will be discussed in the first part of the webinar. Examples of applications will include photosensitive proteins studies, polymer curing, and a stop-flow.
Key Learning Objectives:
Featured Speakers:
Dr. Sergey Shilov
R&D Product Manager, North
America
Bruker Optics
Dr. Sergey V. Shilov is the R&D Product Manager for North America at Bruker Optics. Sergey joined Bruker in 2001. He is responsible for the support and development of new applications for the Bruker research FT-IR systems. He received his Ph.D. in 1992 from the Russian Academy of Sciences in Polymer Physics and his M.S. from St. Petersburg State University (Russia) in Physics in 1986. The Alexander Von Humboldt foundation (Germany) awarded him a research fellowship in 1996. Sergey published 37 papers in peer-reviewed journals. His research interests include time-resolved FT-IR spectroscopy, surface science, polymer, and life-science applications.
Register Free: https://www.spectroscopyonline.com/spec_w/time-resolved
Next-Generation Infrared Sensors: Innovations in Semiconductor Materials and Applications
February 19th 2025A recent study provides an in-depth overview of the latest advancements in infrared (IR) semiconductor sensor technology, highlighting new materials, enhanced detection capabilities, and expanding applications across industrial, medical, security, and environmental fields. The research explores how quantum dots, graphene, and novel nanomaterials are revolutionizing IR detection, paving the way for more efficient and versatile sensor systems.
FT-IR Microscopy, Part 2: Mid-IR Sampling with DRIFTS, IRRAS, and ATR
February 14th 2025Fourier transform infrared (FT-IR) microscopy using reflection methods (diffuse reflection, reflection/reflection-absorption, or attenuated total reflectance) typically requires less sample preparation than transmission. However, optimal results will depend upon the sample and, in particular, the sample surface.
Geographical Traceability of Millet by Mid-Infrared Spectroscopy and Feature Extraction
February 13th 2025The study developed an effective mid-infrared spectroscopic identification model, combining principal component analysis (PCA) and support vector machine (SVM), to accurately determine the geographical origin of five types of millet with a recognition accuracy of up to 99.2% for the training set and 98.3% for the prediction set.