In a recent study published in Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, two researchers from India studied the molecular composition of topiramate, revealing new insights.
Topiramate is a drug that is known for its use in treating alcohol dependence and the underlying mechanisms of the molecules that comprise it are a scientific interest.
Bottles and glasses of alcohol drinks | Image Credit: © draghicich - stock.adobe.com.
In a new study published in Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, researchers from Women's Christian College and Shrimathi Devkunvar Nanalal Bhatt Vaishnav College for Women in Tamil Nadu, India, explored the Fourier transform infrared (FT-IR), FT-Raman, FT-nuclear magnetic resonance (NMR), and UV-visible (UV-vis) spectra of Topiramate (1).
The researchers recorded and analyzed the FT-IR, FT-Raman, FT-NMR, and UV–vis spectra of Topiramate. By employing Restricted Hartree–Fock (RHF) and density functional theory (DFT) with a 6–31 + G(d,p) basis set, they calculated theoretical vibrational frequencies, geometric parameters, thermodynamic properties, Natural population analysis, and Mulliken atomic charges of the drug (1).
The scientists found that there was close agreement between the calculated harmonic vibrational frequencies and the experimental values of FTIR and FT-Raman spectra (1). This observation helped confirm that the computational model used in the study led to accurate results.
Furthermore, natural bond orbital (NBO) analysis revealed insights into the molecule's stability, elucidating hyperconjugative interactions and charge delocalization (1). The research also explored the first order hyperpolarizability (βtot), dipole moment (µ), and polarizability (αo), suggesting that Topiramate may exhibit microscopic nonlinear optical (NLO) behavior (1).
The study encompassed a comprehensive analysis, including the assignment of fundamental frequencies and the comparison of experimental results with theoretical data. The research also extended to predicting 1H and 13C chemical shift values, revealing a strong agreement with experimental data (1).
Furthermore, the study showcased the enhanced nonlinear optical (NLO) properties of Topiramate compared to urea, hinting at potential applications beyond addiction therapy. The optimized geometry was compared to experimental X-ray diffraction (XRD) data, yielding valuable insights into the molecule's structure (1).
The investigation into Mulliken charges and Natural atomic charges using both RHF and DFT methods enriches the understanding of Topiramate's electronic properties (1). Additionally, the calculated normal-mode vibrational frequencies provided thermodynamic properties through statistical mechanics (1).
As a result, this study shows that the Topiramate molecule may exhibit NLO behavior, and the calculated harmonic vibrational frequencies for Topiramate were compared with the experimental values of FT-IR and FT-Raman spectra (1).
(1) Chandramalar, I. M.; Subhasini, V. P.Vibrational spectroscopic analysis of 2, 3:4,5-Bis-O-(1-methylethylidene)beta-D-fructopyranose Sulfamate(Topiramate) by density functional method. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc. 2023, 302, 122997. DOI: 10.1016/j.saa.2023.122997
This article was written with the help of artificial intelligence and has been edited to ensure accuracy and clarity. You can read more about our policy for using AI here.
New Study Provides Insights into Chiral Smectic Phases
March 31st 2025Researchers from the Institute of Nuclear Physics Polish Academy of Sciences have unveiled new insights into the molecular arrangement of the 7HH6 compound’s smectic phases using X-ray diffraction (XRD) and infrared (IR) spectroscopy.
Exoplanet Discovery Using Spectroscopy
March 26th 2025Recent advancements in exoplanet detection, including high-resolution spectroscopy, adaptive optics, and artificial intelligence (AI)-driven data analysis, are significantly improving our ability to identify and study distant planets. These developments mark a turning point in the search for habitable worlds beyond our solar system.
Using Spectroscopy to Reveal the Secrets of Space
March 25th 2025Scientists are using advanced spectroscopic techniques to probe the universe, uncovering vital insights about celestial objects. A new study by Diriba Gonfa Tolasa of Assosa University, Ethiopia, highlights how atomic and molecular physics contribute to astrophysical discoveries, shaping our understanding of stars, galaxies, and even the possibility of extraterrestrial life.