In a recent study published in the journal AIP Advances, researchers used molecular and elemental spectroscopic techniques, such as laser-induced breakdown spectroscopy (LIBS), Raman spectroscopy, and Fourier transform infrared (FT-IR) spectroscopy, to characterize silicate gems found in ancient Egyptian mines (1).
Colorful Gemstones placed on white reflection background, 3d rendering. | Image Credit: © sarawut795 - stock.adobe.com
For this study, the researchers examined a wide variety of gems, dating back to the era of the pharaohs. The team analyzed gem samples including peridot, beryl/emerald, amazonite, and amethyst to learn more about their chemical compositions. Doing so allowed the researchers to gain additional insight into ancient Egyptian history, which could potentially help determine trade routes in ancient civilizations (1). The researchers compared the gems to a sample of peridot uncovered in the Harrat Kishb lava field in western Saudi Arabia (1).
Jabal Umm aḑ Ḑulū volcanic crater in Harrat Kishb, Makkah Province, Saudi Arabia | Image Credit: © Walter_D - stock.adobe.com
Gems are valuable artifacts in archaeology. Gemstones have great historical and cultural significance. By uncovering ancient gemstones, archaeologists can use them to piece together what an ancient society might have been like, and what the people living during that time valued. These artifacts embody both cultural significance and visual beauty. However, it can be challenging to find an effective and efficient detection method that can distinguish between natural and synthetic gemstones (1). Spectroscopic techniques can be helpful in this process.
For example, LIBS is an effective technique that can distinguish different gem groups. By analyzing specific spectral windows, researchers identified unique characterizing elements for each gem variety. Raman and FT-IR spectroscopy also served as invaluable tools, offering distinct molecular fingerprints that can indicate potential alterations over time. FT-IR even unveiled specific functional groups responsible for the captivating colors seen in these gemstones.
In this study, three experimental methods were used, one for each spectroscopic technique. The experimental setup for LIBS analysis involved using a Q-switched Nd:YAG laser at a wavelength of 1064 nm. An Escelle spectrometer was coupled to an ICCD camera, and LIBS software was used to analyze the LIBS spectra (1). FT-IR analysis was conducted using a Model 4100 Jasco spectrometer working in the vibrational range of 400–4000 cm-1 wavenumber, using potassium bromide as a reference. Raman analysis was conducted with using a German-made confocal Raman microscope under the conditions of 473/532/633 nm laser excitation, z-focus, and a software-controlled x–y sample stage for line scanning and mapping (1).
Gem enthusiasts, historians, and gemstone traders stand to benefit from the ability to trace the origin and authenticity of gemstones, offering a tantalizing glimpse into the ancient past.
(1) Khedr, A. A.; Surour, A. A.; El-Hussein, A.; Abdelhamid, M. Characterization and discrimination of some gem silicate minerals adopting LIBS, FTIR, and Raman spectroscopic techniques. AIP Advances 2023, 13, 085101. DOI: 10.1063/5.0157623
AI Shakes Up Spectroscopy as New Tools Reveal the Secret Life of Molecules
April 14th 2025A leading-edge review led by researchers at Oak Ridge National Laboratory and MIT explores how artificial intelligence is revolutionizing the study of molecular vibrations and phonon dynamics. From infrared and Raman spectroscopy to neutron and X-ray scattering, AI is transforming how scientists interpret vibrational spectra and predict material behaviors.
Real-Time Battery Health Tracking Using Fiber-Optic Sensors
April 9th 2025A new study by researchers from Palo Alto Research Center (PARC, a Xerox Company) and LG Chem Power presents a novel method for real-time battery monitoring using embedded fiber-optic sensors. This approach enhances state-of-charge (SOC) and state-of-health (SOH) estimations, potentially improving the efficiency and lifespan of lithium-ion batteries in electric vehicles (xEVs).
Laser Ablation Molecular Isotopic Spectrometry: A New Dimension of LIBS
July 5th 2012Part of a new podcast series presented in collaboration with the Federation of Analytical Chemistry and Spectroscopy Societies (FACSS), in connection with SciX 2012 — the Great Scientific Exchange, the North American conference (39th Annual) of FACSS.
New Multi-Spectroscopic System Enhances Cultural Heritage Analysis
April 2nd 2025A new study published in Talanta introduces SYSPECTRAL, a portable multi-spectroscopic system that can conduct non-invasive, in situ chemical analysis of cultural heritage materials by integrating LIBS, LIF, Raman, and reflectance spectroscopy into a single compact device.