This article provides a convenient summary of portable and handheld spectroscopy techniques, outlining the most prominent types of compact instruments for both atomic and molecular spectroscopy.
This article provides a set of tables summarizing the most prominent handheld and portable instruments widely applied for field and outside the laboratory analysis. Techniques covered in this article include X-ray fluorescence (XRF), laser-induced breakdown spectroscopy (LIBS), infrared (IR) spectroscopy, near-infrared (NIR) spectroscopy, Raman spectroscopy, ultraviolet, and visible spectroscopy.
The article summarizes this information by providing six tables describing the available handheld and portable instrumentation for atomic spectroscopy techniques, including X-ray fluorescence (XRF) and laser-induced breakdown spectroscopy (LIBS), as well as molecular spectroscopy techniques including ultraviolet (UV), visible (vis), infrared (IR), near-infrared (NIR), and Raman spectroscopy. Each table includes a generalized description of the technique, the technical design and specifications features, a summary of typical dimensions for the smaller footprint instruments, and a list of applications where the various instruments are primarily used. The specific applications surveyed include agriculture, archaeometry, art, biomedical, chemicals, environmental, food, forensics, materials, pharmaceuticals, and polymers, which makes sense because these are the main application areas that lend themselves to in situ analysis in either the field or a manufacturing plant. For each category, references are listed in the reference section. General references include some original inventions as well as general references for each specific technology or spectroscopic technique.
Recent History of Handheld and Portable Instruments
Excellent resources are available on the various topics described in this article, including a recent review on the subject of portable spectroscopy (P1), and a set of volumes describing the detailed theory, instrument design, methods, and applications of molecular spectroscopic techniques (P2).
Introduction to the Tables
The tables in this article describe the major attributes for portable atomic spectroscopy methods (Tables I and II) and for the predominant portable molecular spectroscopy methods (Tables III–VII).
References
Portable Spectroscopy
(P1)R.A. Crocombe, Appl. Spectrosc. 72(12), 1701–1751 (2018).
(P2)J.J. Workman Jr, Concise Handbook Of Analytical Spectroscopy, Theory, Applications, And Reference Materials (in 5 Volumes). (World Scientific, Singapore, 2016).
Atomic Spectroscopy
XRF
(X1) P.T. Palmer, R. Jacobs, P.E. Baker, K. Ferguson, and S. Webber, J. Agric. Food Chem. 57(7), 2605–2613 (2009).
(X2)A. Migliori, P. Bonanni, L. Carraresi, N. Grassi, and P.A. Mando, X-Ray Spectrom. 40(2), 107–112 (2011).
(X3)G. Buzanich, P. Wobrauschek, C. Streli, A. Markowicz, D. Wegrzynek, E. Chinea-Cano, M. Griesser, and K. Uhlir, X-Ray Spectrom. 39(2), 98–102 (2010).
(X4) P.D. Selid, H. Xu, E.M. Collins, M. Striped Face-Collins, and J.X. Zhao, Sensors 9(7), 5446–5459 (2009).
(X5)D.J. Kalnicky, and R. Singhvi, J. Hazard. Mater. 83(1–2), 93–122 (2001).
(X6)R. Carr, C. Zhang, N. Moles, and M. Harder, Environ. Geochem. Health 30(1), 45–52 (2008).
(X7)M.A. Bush, R.G. Miller, A.L. Norrlander, and P.J. Bush, J. Forensic Sci. 53(2), 419–425 (2008).
(X8) R.J. Speakman, N.C. Little, D. Creel, M.R. Miller, and J.G. Iñañez, J. Archaeol. Sci. 38(12), 3483–3496 (2011).
(X9)S. Arzhantsev, X. Li, and J.F. Kauffman, Anal. Chem. 83(3), 1061–1068 (2011).
(X10) A. Guzzonato, F. Puype, and S.J. Harrad, Chemosphere 159, 89–95 (2016).
(X11) S. Piorek, Field Anal. Chem. & Tech. 1(6), 317–329 (1997).
(X12) A. Longoni, C. Fiorini, P. Leutenegger, S. Sciuti, G. Fronterotta, L. Strüder, and P. Lechner, Nucl. Instrum. Methods Phys. 409(1–3), 407–409 (1998).
LIBS
(L1) X.T. Yan, K.M. Donaldson, C.M. Davidson, Y. Gao, H. Wu, A.M. Houston, and A. Kisdi, RSC Adv. 8(64), 36886–36894 (2018).
(L2) P. Vandenabeele and M.K. Donais, Appl. Spectrosc. 70(1), 27–41 (2016).
(L3) V.K. Singh and A.K. Rai, Lasers Med. Sci. 26(5), 673–687 (2011).
(L4)R.S. Harmon, F.C. DeLucia, C.E. McManus, N.J. McMillan, T.F. Jenkins, M.E. Walsh, and A. Miziolek, Appl. Geochem. 21(5), 730–747 (2006).
(L5) A.P. Rao, J.D. Auxier, D.M. Vu, and M.B. Shattan, “Applications of Portable LIBS for Actinide Analysis,” in Laser Applications to Chemical, Security and Environmental Analysis (Optical Society of America, Washington, D.C. 2020), pp. LM1A-2.
(L6) M. Markiewicz-Keszycka, X. Cama-Moncunill, M.P. Casado-Gavalda, Y. Dixit, R. Cama-Moncunill, P.J. Cullen, and C. Sullivan, Trends Food Sci. Technol. 65, 80–93 (2017).
(L7)A. Doña-Fernández, I. de Andres-Gimeno, P. Santiago-Toribio, E. Valtuille-Fernández, F. Aller-Sanchez, and A. Heras-González, Forensic Sci. Int. 292, 167–175 (2018).
(L8)Q. Zeng, L. Guo, X. Li, M. Shen, Y. Zhu, J. Li, X. Yang, K. Li, J. Duan, X. Zeng, and Y. Lu, J. Anal. At. Spectrom. 31(3), 767–772 (2016).
(L9) S. Nisar, G. Dastgeer, M. Shafiq, and M. Usman, J. Pharm. Anal. 9(1), 20–24 (2019).
(L10) D. Stefas, N. Gyftokostas, E. Bellou, and S. Couris, Atoms 7(3), 79 (2019).
(L11) G.S. Senesi, R.S. Harmon, and R.R. Hark, “Field-Portable and Handheld LIBS,” in Laser-Induced Breakdown Spectroscopy (Elsevier, New York, New York, 2020), pp. 537–560.
(L12) G.S. Senesi, Int. J. Earth Sci. (2017). doi.org/10.15344/2456-351X/2017/146.
Molecular Spectroscopy
Ultraviolet
(U1)A. Tuerxun, A.R.M. Shariff, R. Janius, Z. Abbas, and G.A. Mahdiraji, IOP Conference Series: Earth and Environmental Science 540(1), 012085 (2020).
(U2)M. Picollo, M. Aceto, and T. Vitorino, Phys. Sci. Rev. 4(4) (2018).
(U3)E. Borisova, D. Ivanov, B. Kolev, T. Genova, V. Mircheva, S. Ilyov, L. Zaharieva, I. Lihachova, A. Lihachovs, J. Spigulis, and P. Troyanova, “Autofluorescence Spectroscopy of Cutaneous Neoplasia Under Ultraviolet, Visible, and Near-Infrared Excitation,” In Tissue Optics and Photonics (International Society for Optics and Photonics, Bellingham, Washington, 2020), 11363, pp. 113630Z.
(U4)H.E. Tahir, Z. Xiaobo, X. Jianbo, G.K. Mahunu, S. Jiyong, J.L. Xu, and D.W. Sun, Food Anal. Methods 12(10), 2361–2382 (2019).
(U5) E.M. Alves, R.J Rodrigues, C. dos Santos Corrêa, T. Fidemann, J.C. Rocha, J.L.L. Buzzo, P. de Oliva Neto, and E.G.F. Núñez, Environ. Monit. Assess. 190(6), 319 (2018).
(U6) Y. Weesepoel, M. Alewijn, M. Wijtten, and J. Müller-Maatsch, J. AOAC Int. (2020). doi.org/10.1093/jaoacint/qsaa099.
(U7)X. Li, J. Li, J. Ling, C. Wang, Y. Ding, Y., Chang, N. Li, Y. Wang, and J. Cai, Sens. Actuators B Chem. 128303 (2020).
(U8)M. Hunault, G. Lelong, M. Gauthier, F. Gélébart, S. Ismael, L. Galoisy, F. Bauchau, C. Loisel, and G. Calas, Appl. Spectros. 70(5), 778–784 (2016).
(U9)W. Chen, Y. Xiong, W. Wang, T. Wu, L. Li, Q. Kang, and Y. Du, Talanta 203, 77–82 (2019).
(U10) O.R. Koseoglu, A. Al-Hajji, and G. Jamieson, Characterization of crude oil by ultraviolet visible spectroscopy, Saudi Arabian Oil Co, U.S. Patent 10,048,194 (2018).
(U11) M.L. Passos and M.L.M. Saraiva, Measurement 135, 896–904 (2019). doi.org/10.1016/j.measurement.2018.12.045
(U12) A.B.D. Nandiyanto, R. Zaen, R. Oktiani, A.G. Abdullah, and L.S. Riza, Telkomnika 16(2), 580–585 (2018).
Visible
(V1) M.J. Aitkenhead, G.J. Gaskin, N. Lafouge, and C. Hawes, Sensors 17(1), 99 (2017).
(V2) Q. Wu, M. Hauldenschild, B. Rösner, T. Lombardo, K. Schmidt-Ott, B. Watts, F. Nolting, and D. Ganz, “Does Substrate Colour Affect the Visual Appearance of Gilded Medieval Sculptures? Part I: Colorimetry and Interferometric Microscopy of Gilded Models” (2020). doi.org/10.21203/rs.3.rs-66102/v1.
(V3) W. Zhao, S. Tian, L. Huang, K. Liu, L. Dong, and J. Guo, Analyst 145(8), 2873–2891 (2020).
(V4)A. Motalebizadeh, H. Bagheri, S. Asiaei, N. Fekrat, and A. Afkhami, RSC Adv. 8(48), 27091–27100 (2018).
(V5)D.A. Fischer, “Portable Instrumentation for UV-Visible Spectroscopy of Ambient and Laboratory-Generated Aerosols” (doctoral dissertation, University of Georgia, Athens, Georgia, 2018). http://purl.galileo.usg.edu/uga_etd/fischer_donald_a_201805_phd
(V6) J. Vincent, H. Wang, O. Nibouche, and P. Maguire, Sensors 18(6), 1708 (2018).
(V7) G.O. da Silva, W.R. de Araujo, and T.R. Paixão, Talanta 176, 674–678 (2018).
(V8) A. De Bonis, G. Cultrone, C. Grifa, A. Langella, A.P. Leone, M. Mercurio, and V. Morra, Ceram. Int. 43(11), 8065–8074 (2017).
(V9) A. Lantam, W. Limbut, A. Thiagchanya, and A. Phonchai, Microchem. J. 105519 (2020). doi.org/10.1016/j.microc.2020.105519
(V10) N. Shisa, S. Ishihara, Y. Huang, M. Asai, and K. Ariga, “Colorimetric Sensor for Facile Identification of Methanol-Containing Gasoline” (No. 2017-01-1288). SAE Technical Paper (2017). doi.org/10.4271/2017-01-1288
(V11) A. Scheeline, and T.A. Bùi, Appl. Spectrosc. 70(5), 766–777 (2016).
(V12) K. Devarayan, “Progress in Development of Portable Colorimeters for On-Site Analyses” (2019). PDF at https://chesci.com/wp-content/uploads/2019/11/V8i31_2_CS072050061.pdf
Near-Infrared
(N1)J. Workman Jr. and L. Weyer, Practical Guide and Spectral Atlas for Interpretive Near-Infrared Spectroscopy (CRC Press, Boca Raton, Florida, 2012).
(N2)M. Attas, E. Cloutis, C. Collins, D. Goltz, C. Majzels, J.R. Mansfield, and H.H. Mantsch, J. Cult. Herit. 4(2), 127–136 (2003).
(N3) A. Bozkurt, A. Rosen, H. Rosen, and B. Onaral, Biomed. Eng. Online 4(1), 1–11(2005). doi.org/10.1186/1475-925X-4-29
(N4) R.M. Correia, E. Domingos, F. Tosato, N.A. dos Santos, J.D.A. Leite, M. da Silva, M.C. Marcelo, R.S. Ortiz, P.R. Filgueiras, and W. Romão, Anal. Methods 10(6), 593–603 (2018).
(N5) M. Sut, T. Fischer, F. Repmann, T. Raab, and T. Dimitrova, Water Air Soil Pollut. 223(8), 5495–5504 (2012).
(N6)C.A.T. Dos Santos, M. Lopo, R.N. Páscoa, and J.A. Lopes, Appl. Spectrosc. 67(11), 1215–1233 (2013).
(N7)K. Tsujikawa, T. Yamamuro, K. Kuwayama, T. Kanamori, Y.T. Iwata, K. Miyamoto, F. Kasuya, and H. Inoue, Forensic Sci. Int. 242, 162–171 (2014).
(N8) O.R. Dumitrescu, D.C. Baker, G.M. Foster, and K.E. Evans, Polym. Test. 24(3), pp.367-375 (2005).
(N9) V.H. da Silva, J.J. da Silva, and C.F. Pereira, J. Pharm. Biomed. 134, 287–294 (2017).
(N10) M. Kumagai, H. Suyama, T. Sato, T. Amano, and N. Ogawa, J. Near Infrared Spectrosc. 10(4), 247–255 (2002).
(N11) E.W. Ciurczak, B. Igne, J. Workman Jr., and D.A. Burns, Handbook of Near-Infrared Analysis (CRC Press, Boca Raton, Florida, 4th Ed., 2020).
(N12) Y. Zhang, J.W. Sun, G. Wei, F. Scopesi, G. Serra, and P. Rolfe, “Design of a portable near infra-red spectroscopy system for tissue oxygenation measurement,” in 3rd International Conference on Bioinformatics and Biomedical Engineering (June 11, 2009) pp. 1-4 doi.org/10.1109/ICBBE.2009.5162593
Infrared
(I1)E.D. Wilkerson, G.E. Anthon, D.M. Barrett, G.F.G. Sayajon, A.M. Santos, and L.E. Rodriguez-Saona, J. Agric. Food Chem. 61(9), 2088–2095 (2013).
(I2)M. Vagnini, F. Gabrieli, A. Daveri, and D. Sali, Spectrochim Acta A Mol. Biomol. Spectrosc. 176, 174–182 (2017).
(I3) A. Schwaighofer, M. Brandstetter, and B. Lendl, Chem. Soc. Rev. 46(19), 5903–5924 (2017).
(I4)I. Yut and A. Zofka, Appl. Spectrosc. 65(7), 765–770 (2011).
(I5)I. Litvak, Y. Anker, and H. Cohen,. RSC Adv. 8(50), 28472–28479 (2018).
(I6)M. Manfredi, E. Robotti, F. Quasso, E. Mazzucco, G. Calabrese, and E. Marengo, Spectrochim Acta A Mol. Biomol. Spectrosc. 189, 427–435 (2018).
(I7) J. Manheim, K.C. Doty, G. McLaughlin, and I.K. Lednev, Appl. Spectrosc. 70(7), 1109–1117 (2016).
(I8)S. Karampelas, L. Kiefert, D. Bersani, and P. Vandenabeele, “Gem Analysis,” in Gems and Gemology (Springer International Publishing, Cham, Switzerland, 2020), pp. 39–66.
(I9)A.G. Usman, U.M. Ghali, and S. Işık, J. Fac. Pharm. Ankara 44(1), 188–203 (2020). doi.org/10.33483/jfpau.599077
(I10) M. Said, M. Amr, Y. Sabry, D. Khalil, and A. Wahba, “Plastic Sorting Based on MEMS FT-IR Spectral Chemometrics Sensing,” In Optical Sensing and Detection VI 11354, 113540J. (International Society for Optics and Photonics, Bellingham, Washington, 2020). doi.org/10.1117/12.2555876
(I11) R. Mukhopadhyay, “Product review: Portable FT-IR Spectrometers Get Moving” (PDF version online). https://pubs.acs.org/doi/pdf/10.1021/ac041652z
(I12) Y.M. Sabry, K. Hassan, M. Anwar, M.H. Alharon, M. Medhat, G.A. Adib, R. Dumont, B. Saadany, and D. Khalil, “Ultra-Compact MEMS FTIR Spectrometer,” In Next-Generation Spectroscopic Technologies X 10210, 102100H. (International Society for Optics and Photonics, Bellingham, Washington, 2017). doi.org/10.1117/12.2268078
Raman
(R1)S.H. Liu, B.Y. Wen, J.S. Lin, Z.W. Yang, S.Y. Luo, and J.F. Li, Appl. Spectrosc. p.0003702820951891 (2020). doi.org/10.1177/0003702820951891
(R2) D. Lauwers, A.G. Hutado, V. Tanevska, L. Moens, D. Bersani. and P. Vandenabeele, Spectrochim Acta A Mol. Biomol. Spectrosc. 118, 294–301 (2014).
(R3)Y. Zou, M. Huang, K. Wang, B. Song, Y. Wang, J. Chen, X. Liu, X. Li, L. Lin, and G. Huang, Laser Phys. Lett. 13(6), 065604 (2016).
(R4)J. Jehlička, P. Vitek, H.G.M. Edwards, M.D. Hargreaves, and T. Čapoun, J. Raman Spectrosc. 40(8), 1082–1086 (2009).
(R5)M. Li and X. Zhang, Bull. Environ. Contam. Toxicol. 1–12 (2020). doi.org/10.1007/s00128-020-02989-5
(R6)X. Gong, M. Tang, Z. Gong, Z. Qiu,D. Wang, and M. Fan, Food Chem. 295, 254–258 (2019).
(R7) J. Fujihara, Y. Fujita, T. Yamamoto, N. Nishimoto, K. Kimura-Kataoka, S. Kurata, Y. Takinami, T. Yasuda, and H. Takeshita, Int. J. Legal Med. 131(2), 319–322 (2017).
(R8)J. Jehlička, A. Culka, D. Bersani, and P. Vandenabeele, J. Raman Spectrosc. 48(10), 1289–1299 (2017).
(R9)L.M.M. Lê, A. Tfayli, J. Zhou, P. Prognon, A. Baillet-Guffroy, and E. Caudron, Talanta 161, 320–324 (2016).
(R10)A. Klisińska-Kopacz, B. Łydżba-Kopczyńska, M. Czarnecka, T. Koźlecki, J. del Hoyo Mélendez, A. Mendys, A. Kłosowska-Klechowska, M. Obarzanowski, and P. Frączek, J. Raman Spectrosc. 50(2),
213–221 (2019).
(R11)J.P. Bourgeois and O. Vorlet, CHIMIA International Journal for Chemistry 72(12), 905–906 (2018). (PDF document). doi.org/10.2533/chimia.2018.905
(R12)M. Tang, X. Wang, F. Xianguang, W. Li, Y. Xu, J. Que, J. He, and Y. Zuo, Appl. Opt. 55(26), 7195–7203 (2016).
Jerome Workman, Jr. serves on the Editorial Advisory Board of Spectroscopy and is the Senior Technical Editor for LCGC and Spectroscopy. He is also a Certified Core Adjunct Professor at U.S. National University in La Jolla, California. He was formerly the Executive Vice President of Research and Engineering for Unity Scientific and Process Sensors Corporation.
Best of the Week: Seed Vigor, Flower Classification, Emerging Leader in Atomic Spectroscopy
January 10th 2025Top articles published this week include two peer-reviewed articles that explore optical detection technology for seed vigor and classifying flowers, as well as a profile on Benjamin Manard, who was recognized as the winner of the 2025 Emerging Leader in Atomic Spectroscopy.
Measuring Soil Potassium with Near-Infrared Spectroscopy
January 8th 2025Researchers have developed a novel three-step hybrid variable selection strategy, SiPLS-RF(VIM)-IMIV, to enhance the accuracy and efficiency of soil potassium measurement using near-infrared spectroscopy, offering significant advancements for precision agriculture and real-time soil monitoring.