Application Notebook
A new Raman spectrometer system, innoRamâ„¢, has been developed to provide research-grade performance in either a lab or a mobile environment. The Raman analysis of carbon nanotubes using innoRam in comparison with a Raman spectrometer using a conventional front illuminated CCD demonstrates distinctive improvements for innoRam in both sensitivity and signal-to-noise ratio (SNR).
Dawn Yang, B&W Tek, Inc.
A new Raman spectrometer system, innoRam™, has been developed to provide research-grade performance in either a lab or a mobile environment. The Raman analysis of carbon nanotubes using innoRam in comparison with a Raman spectrometer using a conventional front illuminated CCD demonstrates distinctive improvements for innoRam in both sensitivity and signal-to-noise ratio (SNR).
B&W Tek's newly developed Raman system, innoRam™, is a research-grade Raman spectrometer with high sensitivity and application versatility. The innoRam's back-thinned 2D vertically binned CCD detector with TE-cooling to –20 °C ensures research-grade performance. The application discussed in this paper is a comparison of Raman analysis of carbon nanotubes between innoRam and a Raman spectrometer with front-illuminated linear CCD detector with TE-cooling to 14 °C.
Compared with a conventional front-illuminated CCD with quantum efficiency around 50%, the back-thinned or back-illuminated CCD quantum efficiency can reach up to 90%. The lower QE of a front-illuminated CCD is due to the incident photons being largely reflected and absorbed by gate structures (Poly-Si, BPSG, gate oxide) while traveling through the front side of the CCD. A back-thinned CCD minimizes these losses by etching the Si substrate (to limit the absorption) and illuminating the CCD from behind. This greatly increases its quantum efficiency by reducing the photon loss. Due to the low photon efficiency of the Raman phenomenon (10–8), detectors used in Raman spectrometry must have readout noise and dark noise that is very low to identify the Raman signal from the sample. TE-cooling of the CCD device effectively reduces the dark noise: the dark noise halves for each 7 °C decrease in device temperature. The deep TE-cooled detector allows long integration time (up to 16 minutes for innoRam), which greatly increases the detection limit. 2D binning, which is to combine two or more vertical rows of the CCD array, is another technique to improve signal-to-noise ratio. The characteristics of the detector make innoRam ideal for low-light level applications.
The Raman spectrum of carbon nanotubes was collected using B&W Tek's innoRam Raman spectrometer system (Figure 1a) with 785 nm laser excitation. The Raman spectrum of carbon nanotubes measured from innoRam is shown in Figure 1 (b). The Raman spectrum of the same carbon nanotubes using a Raman spectrometer with a front-illuminated linear CCD TE-cooled to 14 °C is shown in Figure 1 (c). In order to have a direct comparison, the same laser power (25 mW) and integration time (10 sec) were used for both Raman measurements. The comparison of Figure 1 (b) and (c) shows distinctive improvement of SNR and increase of intensity in the spectrum from the innoRam.
Figure 1
B&W Tek's innoRam Raman spectrometer system, featuring a back-thinned 2D vertically binned CCD detector with TE-cooling to –20 °C, provides research-grade performance with high sensitivity and SNR, which is clearly demonstrated by the comparison of Raman analysis of carbon nanotubes between innoRam and a Raman system using a conventional front-illuminated linear CCD with TE-cooling to 14 °C.
B&W Tek, Inc.
19 Shea Way, Newark, DE 19713
Tel. (302) 368-7824, Fax: (302) 368-7830
Website: www.bwtek.com, Email: info@bwtek.com
Testing Solutions for Metals and PFAS in Water
January 22nd 2025When it comes to water analysis, it can be challenging for labs to keep up with ever-changing testing regulations while also executing time-efficient, accurate, and risk-mitigating workflows. To ensure the safety of our water, there are a host of national and international regulators such as the US Environmental Protection Agency (EPA), World Health Organization (WHO), and the European Union (EU) that demand stringent testing methods for drinking water and wastewater. Those methods often call for fast implementation and lengthy processes, as well as high sensitivity and reliable instrumentation. This paper explains how your ICP-MS, ICP-OES, and LC-MS-MS workflows can be optimized for compliance with the latest requirements for water testing set by regulations like US EPA methods 200.8, 6010, 6020, and 537.1, along with ISO 17294-2. It will discuss the challenges faced by regulatory labs to meet requirements and present field-proven tips and tricks for simplified implementation and maximized uptime.
Practical Autodilution for ICP-MS and ICP-OES
January 20th 2025Gain insights into improving efficiency and accuracy in elemental analysis through automated dilution technology. Learn about the key capabilities of the Agilent ADS 2 system and its seamless integration with ICP-MS and ICP-OES workflows.
UV-Vis Spectroscopy: Exporting Your Measurement Out of the Instrument
January 20th 2025Optical fibers in ultraviolet-visible (UV-Vis) spectroscopy can enable measurements outside the traditional sample compartment. This paper details the components needed for fiber optic systems, such as couplers and probes, and reviews the performance of Agilent's Cary series instruments. It is crucial to choose the right fiber optic setup for a specific lab’s needs to ensure accurate and efficient measurements.