A custom-engineered spectrometer from Ocean Optics is part of the scientific payload on NASA's LCROSS mission that was launched on June 18, 2009.
A custom-engineered spectrometer from Ocean Optics (Dunedin, Florida), part of the scientific payload on NASA’s Lunar CRater Observation and Sensing Satellite (LCROSS) mission, was successfully launched into space Thursday from the Kennedy Space Center in Cape Canaveral, Florida. “ALICE,” as the spectrometer is affectionately known, was drafted for the mission to help analyze the makeup of the lunar craters, with the goal of locating water below the moon’s surface.
The Centaur rocket carrying LCROSS is expected to reach the moon next week and the two will remained coupled for the next four months -- until the next exciting phase in the mission, scheduled for October 9, 2009. The units will then separate, sending the rocket crashing into the moon at more than twice the speed of a bullet. After the rocket impact, expected to generate a 2.2 million-pound plume of matter, another spacecraft carrying ALICE will fly through, looking for signs of water and other compounds.
In partnership with Aurora Design & Technology (Clearwater, Florida), whose work included development of the reflectance viewing optics for the mission, Ocean Optics adapted its highly sensitive QE65000 Spectrometer to survive the harsh conditions of this mission -– extreme temperature ranges and radiation, as well as significant shock and vibration.
ALICE will measure the reflectivity of the ejecta cloud as it rises into the sunlight, enabling scientists to distinguish between water vapor, water ice, and hydrated minerals (such as salts or clays) with molecularly bound water. With a wavelength range of 270-650 nm and an optical resolution of less than 1.0 nm, ALICE will be able to identify, with a high degree of accuracy, ionized water (visible at 619 nm), OH radicals (visible at 308 nm) and other organic molecules containing carbon. Though the measurements are to be taken from the dark region of the moon where light is scarce, the unit’s back-thinned detector makes the most of the light available.
Water hidden deep in the moon’s craters could mean drinking water or even the ability to break down the hydrogen and oxygen molecules into rocket fuel, laying the foundation for the moon as a staging point for further space exploration. The progress of ALICE and LCROSS can be tracked on the mission’s website, www.nasa.gov/mission_pages/LCROSS/main/index.html.
This is the second NASA collaboration for Ocean Optics. A unit designed around the company’s HR-Series spectrometers will be part of the 2009 ChemCam Mars mission to study rock and soil composition on the red planet.
New SERS-Microfluidic Platform Classifies Leukemia Using Machine Learning
January 14th 2025A combination of surface-enhanced Raman spectroscopy (SERS) and machine learning on microfluidic chips has achieved an impressive 98.6% accuracy in classifying leukemia cell subtypes, offering a fast, highly sensitive tool for clinical diagnosis.
Advancing Soil Carbon Analysis Post-Wildfire with Spectroscopy and Machine Learning
January 14th 2025Researchers from the University of Oviedo used diffuse reflectance spectroscopy (DRS) and machine learning (ML) to analyze post-wildfire soil organic carbon fractions, identifying key spectral regions and algorithms for advancing remote sensing applications.
Oligonucleotide Analysis in Pharmaceutical Quality Control
January 14th 2025Melting point determination using ultraviolet-visible (UV-Vis) spectrophotometry can be used as a sequence-specific method for identifying therapeutic oligonucleotides in pharmaceutical quality control. This method offers a simple, highly selective approach to differentiate between isomers and ensure the integrity of oligonucleotide active pharmaceutical ingredients (APIs) and drug products.
The Optical Properties of Solid Samples
January 14th 2025Transmittance and reflectance measurements, which are useful for estimating the effects of various physical processes, can include thermal treatments, ionizing radiation exposure, optical exposure, and mechanical treatments—on both crystals and thin films.