On February 25, Juergen Popp of the Leibniz Institute of Photonic Technology held a presentation at Pittcon in San Diego, California about how artificial intelligence (AI) can aid scientists in the tumor removal processes.
Intraoperative tumor resection is a commonly used tumor removal process that is supported by different examinations of said tumor, whether it be endoscopic, microscopic, or robotic-assisted examination. However, this approach does not enable precise tumor border definition, which can lead to incomplete removals and put patients at risk. According to Popp, biophotonic imaging can help to address this issue, since it can help provide morphological and molecular information on tumors. As part of this study, Popp and his team investigated how novel multimodal label-free spectroscopic instrumentation worked in combination with different AI approaches. The imaging technology was used to visualize tissue morphology and molecular structures, while AI-based image analysis approaches was used to automatically analyze the multimodal images into diagnostic information.
According to Popp, taking full advantage of these imaging approaches would involve implementing spectroscopic-guided femtosecond ablation, using it to seek and treat tumors (1). To this end, the scientists will soon introduce a nonlinear microendoscope that can ablate biological tissue with femtosecond lasers. AI approaches combined with fs-laser ablations will interact will open new ways for intraoperative and histopathological tumor analysis and selective removals, Popp said.
(1) Popp, J. Artificial Intelligence Driven Multimodal Imaging for Tumor Diagnosis and Therapy. Pittcon and The Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy, Inc. 2024. https://labscievents.pittcon.org/event/pittcon-2024/planning/UGxhbm5pbmdfMTc3MjMzOQ== (accessed 2024-2-21)
Combining SERS and Machine Learning to Advance Single-Cell Analysis
December 13th 2024Researchers from Stanford University have combined surface-enhanced Raman spectroscopy (SERS) with machine learning (ML) to enable rapid, precise single-cell analysis, offering potentially transformative applications in diagnostics and personalized medicine.
AI, Deep Learning, and Machine Learning in the Dynamic World of Spectroscopy
December 2nd 2024Over the past two years Spectroscopy Magazine has increased our coverage of artificial intelligence (AI), deep learning (DL), and machine learning (ML) and the mathematical approaches relevant to the AI topic. In this article we summarize AI coverage and provide the reference links for a series of selected articles specifically examining these subjects. The resources highlighted in this overview article include those from the Analytically Speaking podcasts, the Chemometrics in Spectroscopy column, and various feature articles and news stories published in Spectroscopy. Here, we provide active links to each of the full articles or podcasts resident on the Spectroscopy website.
Diffuse Reflectance Spectroscopy to Advance Tree-Level NSC Analysis
November 28th 2024Researchers have developed a novel method combining near-infrared (NIR) and mid-infrared (MIR) diffuse reflectance spectroscopy with advanced data fusion techniques to improve the accuracy of non-structural carbohydrate estimation in diverse tree tissues, advancing carbon cycle research.