On February 25, Juergen Popp of the Leibniz Institute of Photonic Technology held a presentation at Pittcon in San Diego, California about how artificial intelligence (AI) can aid scientists in the tumor removal processes.
Extended Endoscopic removal of stones from the kidneys and ureter. 3d illustration | Image Credit: © Crystal light - stock.adobe.com
Intraoperative tumor resection is a commonly used tumor removal process that is supported by different examinations of said tumor, whether it be endoscopic, microscopic, or robotic-assisted examination. However, this approach does not enable precise tumor border definition, which can lead to incomplete removals and put patients at risk. According to Popp, biophotonic imaging can help to address this issue, since it can help provide morphological and molecular information on tumors. As part of this study, Popp and his team investigated how novel multimodal label-free spectroscopic instrumentation worked in combination with different AI approaches. The imaging technology was used to visualize tissue morphology and molecular structures, while AI-based image analysis approaches was used to automatically analyze the multimodal images into diagnostic information.
According to Popp, taking full advantage of these imaging approaches would involve implementing spectroscopic-guided femtosecond ablation, using it to seek and treat tumors (1). To this end, the scientists will soon introduce a nonlinear microendoscope that can ablate biological tissue with femtosecond lasers. AI approaches combined with fs-laser ablations will interact will open new ways for intraoperative and histopathological tumor analysis and selective removals, Popp said.
(1) Popp, J. Artificial Intelligence Driven Multimodal Imaging for Tumor Diagnosis and Therapy. Pittcon and The Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy, Inc. 2024. https://labscievents.pittcon.org/event/pittcon-2024/planning/UGxhbm5pbmdfMTc3MjMzOQ== (accessed 2024-2-21)
Best of the Week: AI and IoT for Pollution Monitoring, High Speed Laser MS
April 25th 2025Top articles published this week include a preview of our upcoming content series for National Space Day, a news story about air quality monitoring, and an announcement from Metrohm about their new Midwest office.
LIBS Illuminates the Hidden Health Risks of Indoor Welding and Soldering
April 23rd 2025A new dual-spectroscopy approach reveals real-time pollution threats in indoor workspaces. Chinese researchers have pioneered the use of laser-induced breakdown spectroscopy (LIBS) and aerosol mass spectrometry to uncover and monitor harmful heavy metal and dust emissions from soldering and welding in real-time. These complementary tools offer a fast, accurate means to evaluate air quality threats in industrial and indoor environments—where people spend most of their time.
Smarter Sensors, Cleaner Earth Using AI and IoT for Pollution Monitoring
April 22nd 2025A global research team has detailed how smart sensors, artificial intelligence (AI), machine learning, and Internet of Things (IoT) technologies are transforming the detection and management of environmental pollutants. Their comprehensive review highlights how spectroscopy and sensor networks are now key tools in real-time pollution tracking.
New AI Strategy for Mycotoxin Detection in Cereal Grains
April 21st 2025Researchers from Jiangsu University and Zhejiang University of Water Resources and Electric Power have developed a transfer learning approach that significantly enhances the accuracy and adaptability of NIR spectroscopy models for detecting mycotoxins in cereals.