Infrared reflection absorption spectroscopy (IRRAS) is widely employed for analyzing molecules on surfaces, especially water, with applications in atmospheric chemistry and food science. However, concerns exist about its surface-specificity, particularly when examining soluble surfactants in aqueous solutions.
Alexandra Deal, who currently works at Lawrence Berkeley National Laboratory, explored the surface-specificity of IRRAS in soluble organic acids beneath monolayers of insoluble surfactants while she was a graduate research assistant at the University of Colorado, Boulder. She published her findings in Applied Spectroscopy (1). Spectroscopy spoke with Deal to learn more about her research and IRRAS as a technique.
In this video interview, Deal responds to the following questions:
To view our other video content, click on this link here: https://www.spectroscopyonline.com/topic/spectroscopy-interviews
(1) Deal, A. M. Infrared Reflection Absorption Spectroscopy (IRRAS) of Water-Soluble Surfactants: Is it Surface-Specific? Appl. Spectrosc. 2023, ASAP. DOI: 10.1177/00037028231200903
FT-IR Spectroscopy for Microplastic Classification
December 19th 2024A new study in Infrared Physics & Technology highlights the pivotal role of Fourier transform infrared (FTIR) spectroscopy in identifying and quantifying microplastics, emphasizing its advantages, limitations, and potential for advancement in mitigating environmental pollution.
Measuring Microplastics in Remote and Pristine Environments
December 12th 2024Aleksandra "Sasha" Karapetrova and Win Cowger discuss their research using µ-FTIR spectroscopy and Open Specy software to investigate microplastic deposits in remote snow areas, shedding light on the long-range transport of microplastics.
Advances in Mid-Infrared Imaging: Single-Pixel Microscopy Modernized with Quantum Lasers
December 10th 2024Scientists have developed a novel and creative mid-infrared (MIR) hyperspectral microscope using single-pixel imaging (SPI) technology and a quantum cascade laser (QCL). This innovation offers faster, more cost-effective chemical analysis compared to traditional methods, promising new frontiers in microscopic imaging.