In this second part of this four-part series on spectroscopy instrument components, we look into optical components or subassemblies used for vibrational spectroscopy instruments. Our “under the hood” look continues as we survey the most typical instrument optical design component materials. As we continue publishing this survey series, we note that several tutorial articles and The Spectroscopy Instrument Components Terminology Guide, the latter of which was published digitally in February 2022, are available to our readers.
In Part 2 of our four-part spectroscopy components survey article, we take a closer look at a variety of aspects associated with spectroscopy optical materials and designs to include infrared (IR), Raman, and near-IR (NIR) optics, UV optics, visible optics, charge-coupled devices (CCDs), monochromators, interferometers, diode arrays, digital light processing (DLP) designs, microscopes, and hyperspectral imaging (HSI) systems. These are shown in Table III, with the table containing four columns of information content—the component name, a text description, basic specifications, and references and links are given in the table (1–5). Part I of this series is published in the March 2022 issue. Optical filters (high-pass, low-pass, interference, acousto-optic tunable filters [AOTF], tilting, broadband, narrowband, neutral density, custom, and so forth) is a rather large subject and beyond the scope of this article series. The Spectroscopy Instrument Components Terminology Guide covers the general filter terms (1), and we note the subject of optical filters would be an excellent topic for a future separate article. For the table, all components or optical assemblies are listed in alphabetical order.
(1) J. Workman, The Spectroscopy Instrument Components Terminology Guide 2022 37(s2), 1–25 (2022).
(2) J. Workman, The Concise Handbook of Analytical Spectroscopy: Physical Foundations, Techniques, Instrumentation and Data Analysis, in five volumes, first edition, UV, Vis, NIR, IR, and Raman (World Scientific Publishing-Imperial College Press, Hackensack, NJ and Singapore, 2016). ISBN-13: 978-9814508056.
(3) J.M. Chalmers and P.R. Griffiths, Handbook of Vibrational Spectroscopy (John Wiley & Sons, New York, NY, 1st ed., 2002). ISBN: 978-0-471-98847-2
(4) ASTM (American Society for Testing and Materials) ASTM Volume 03.06, “Molecular Spectroscopy and Separation Science; Surface Analysis” (ASTM International, West Conshohocken, PA, 2017).
(5) N.B. Colthup, L.H. Daly, and S.E. Wiberley, Introduction to Infrared and Raman Spectroscopy (Academic Press/ Elsevier, Boston, MA, 3rd ed., 1990). ISBN: 9780121825546.
Year in Review: The Latest in Raman Spectroscopy
December 26th 2024This year-in-review showcases the standout technical articles, compelling interviews, and key news stories that defined the pages of Spectroscopy. In this year in review, the editors of Spectroscopy highlight some of the top published technical articles, interviews, and news content published.
Verifying Meat Origins Using Visible and Near-Infrared Spectroscopy
December 18th 2024A recent study published in Food Research International demonstrates how visible and near-infrared spectroscopy (Vis-NIRS) combined with machine-learning algorithms can accurately authenticate meat and fat based on livestock feeding systems, offering a sustainable and reliable solution for traceability in the meat industry.
ATR FT-IR: A New Vision on Protein Structure and Aggregation
December 17th 2024A recent study by researchers from the University of Belgrade highlights the transformative potential of attenuated total reflectance Fourier transform infrared (ATR-FT-IR) spectroscopy for analyzing protein structures. This versatile method not only provides insights into secondary structures but also excels at tracking aggregation processes, offering advantages over traditional techniques like X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy.