Moxtek's ULTRA-LITE X-ray source is a very small self contained X-ray source (X-ray tube and high voltage power supply) for use in portable X-ray applications, such as the handheld X-ray fluorescence (XRF) spectrometers. This note demonstrates that this X-ray source has a stable and repeatable X-ray flux output over time, which is vital for the precision of the calibrated XRF measurements.
Moxtek's ULTRA-LITE X-ray source is a very small self contained X-ray source (X-ray tube and high voltage power supply) for use in portable X-ray applications, such as the handheld X-ray fluorescence (XRF) spectrometers. This note demonstrates that this X-ray source has a stable and repeatable X-ray flux output over time, which is vital for the precision of the calibrated XRF measurements.
Moxtek's ULTRA-LITE source has a high voltage range of 5–50 kV, an emission current range of 5–200 µA, and comes with an assortment of anode materials including tungsten and silver. The maximum output power on the X-ray tube is 4 Watts. With the X-ray tube running at full power, the source draws approximately 9 Watts. At full power the ULTRA-LITE X-ray source will run for over 3 h on a typical 12 V 2.4 mA-hour batteries. It is very small in size, 25 mm × 46 mm × 148 mm, and weighs only 250 g, making it perfect for handheld and portable instruments.
Two of the key metrics of the X-ray source for XRF applications, and many other applications as well, are X-ray flux and high voltage repeatability. Repeatability means that every time the source is turned on at a particular high voltage and current setting, the high voltage and the X-ray flux stays as constant over time.
In development of the ULTRA-LITE X-ray source we performed a number of characterization tests on multiple units. One key test is a flux repeatability test, in which the source is turned on and off numerous times. For each on/off cycle we capture an image of the focal spot, record the X-ray energy spectra coming off the tube, the energy spectra coming off a secondary XRF target, as well as input and monitor voltages and currents over several hours to days at room temperature.
From these tests we have seen that the ULTRA-LITE source has a very stable and repeatable X-ray flux and high voltage. The flux was measured directly from the source with an X-ray PIN Diode, which measures the flux by counting X-ray photon events. Figure 1 shows the X-ray photon counts collected from an ULTRA-LITE source over 3.5 days of time. The PIN diode also records the energy spectra of the incoming photons, which contains the bremsstrahlung edge from the source. By tracking the bremsstrahlung edge the high voltage stability of the source was tracked over time.
Figure 1: This shows the flux repeatability from one ULTRA-LITE source set at the maximum voltage of 50 kV and 80 µA, the full 4 Watts. The flux is stable to under 0.10% RSD (std/mean) over 3.5 days. The source was turned on for 120 s, then off for 10 s, and cycled on & off 2400 times for this test.
The high voltage of the source does not vary more than ±100 V at 50 (0.2%) kV by measuring the bremsstrahlung edge, and the flux is stable and repeatable within 0.5% RSD or less over the time frame of days. The repeatability of this source will be an asset to any handheld or portable application where excellent flux repeatability is needed, such as XRF.
Moxtek
West 1260 North, Orem, UT 84057
tel. (800) 758-3110
Email: info@moxtek.com
Website: www.moxtek.com
Testing Solutions for Metals and PFAS in Water
January 22nd 2025When it comes to water analysis, it can be challenging for labs to keep up with ever-changing testing regulations while also executing time-efficient, accurate, and risk-mitigating workflows. To ensure the safety of our water, there are a host of national and international regulators such as the US Environmental Protection Agency (EPA), World Health Organization (WHO), and the European Union (EU) that demand stringent testing methods for drinking water and wastewater. Those methods often call for fast implementation and lengthy processes, as well as high sensitivity and reliable instrumentation. This paper explains how your ICP-MS, ICP-OES, and LC-MS-MS workflows can be optimized for compliance with the latest requirements for water testing set by regulations like US EPA methods 200.8, 6010, 6020, and 537.1, along with ISO 17294-2. It will discuss the challenges faced by regulatory labs to meet requirements and present field-proven tips and tricks for simplified implementation and maximized uptime.
Practical Autodilution for ICP-MS and ICP-OES
January 20th 2025Gain insights into improving efficiency and accuracy in elemental analysis through automated dilution technology. Learn about the key capabilities of the Agilent ADS 2 system and its seamless integration with ICP-MS and ICP-OES workflows.
UV-Vis Spectroscopy: Exporting Your Measurement Out of the Instrument
January 20th 2025Optical fibers in ultraviolet-visible (UV-Vis) spectroscopy can enable measurements outside the traditional sample compartment. This paper details the components needed for fiber optic systems, such as couplers and probes, and reviews the performance of Agilent's Cary series instruments. It is crucial to choose the right fiber optic setup for a specific lab’s needs to ensure accurate and efficient measurements.