Application Notebook
Analyzing the effect of UV LED modules on disinfecting ballast water using UV–vis spectroscopy.
Analyzing the effect of UV LED modules on disinfecting ballast water using UV–vis spectroscopy.
Ballast water is seawater that fills a ship to maintain its balance. Annually, about 10 billion tons of ballast water with organisms such as planktons, germs, and bacteria is being transported around the world, and they cause diseases and contamination of marine ecology. UV treatment has the advantage of having no remaining toxic and disinfection by products (DBPs). Selective monochromatic wavelengths can be applied in the UV. Besides this UV LED modules have a low power consumption rate and only a 10~100 (mA) applied current.
Therefore, UV LED modules were designed and fabricated to analyze the disinfection characteristics of UV LED with wavelengths of 255, 265, and 280 nm on phytoplankton such as Tetraselmis sp.
Spectrum Analysis
To analyze the optical spectrum characteristics of the fabricated UV LED modules, a spectrometer (Avaspec-3648, Avantes) was used.
Figure 1: Avantes spectrum of the UV LED modules.
The UV LED modules that were used in the experiment showed peak wavelengths at 255, 265, and 280 nm and approximately 10 nm full widths at half maximum (FWHM). Because the UV LED had the characteristics of a monochromatic wavelength that does not show its spectrum in ranges except for those mentioned above, selective UV irradiation was possible (1).
The disinfection rates of the Tetraselmis sp. showed to be in accordance with the energy that was irradiated onto each UV LED module. The results show that the more the energy that was irradiated, the higher the disinfection rate was.
As a result, in the case of the Tetraselmis sp., the valid disinfection area was formed within the wavelength of the UV-C, and especially the highest disinfection rate occurred between 260 nm and 270 nm.
Figure 2: Shape of the Tetraselmis sp. before and after the UV treatment. While the Tetraselmis sp. clearly showed a round cell membrane before the UV treatment, the shape of the cell membrane was transformed after the UV treatment (2).
Figure 2 shows the shape of the Tetraselmis sp. before and after the UV treatment. While the Tetraselmis sp. clearly showed a round cell membrane before the UV treatment, the shape of the cell membrane was transformed after the UV treatment (2).
(1) Li Xiaojuan and Chen Cunshe, WSEAS Transactions on computers 8(2), 237–247 (2009).
(2) Xiaoli Zhou, Muqing Liu, Yong Qian, Hui Wang, and Shaolong Zhu, WSEAS Transactions on electronics 5(12), 457–467 (2008).
Avantes
9769 W. 119th Dr., Suite 4, Broomfield, CO 80021
tel. (303) 410-8668 or (866) 678-4248, fax (303) 410-8669
Website: www.avantes.com
Testing Solutions for Metals and PFAS in Water
January 22nd 2025When it comes to water analysis, it can be challenging for labs to keep up with ever-changing testing regulations while also executing time-efficient, accurate, and risk-mitigating workflows. To ensure the safety of our water, there are a host of national and international regulators such as the US Environmental Protection Agency (EPA), World Health Organization (WHO), and the European Union (EU) that demand stringent testing methods for drinking water and wastewater. Those methods often call for fast implementation and lengthy processes, as well as high sensitivity and reliable instrumentation. This paper explains how your ICP-MS, ICP-OES, and LC-MS-MS workflows can be optimized for compliance with the latest requirements for water testing set by regulations like US EPA methods 200.8, 6010, 6020, and 537.1, along with ISO 17294-2. It will discuss the challenges faced by regulatory labs to meet requirements and present field-proven tips and tricks for simplified implementation and maximized uptime.
Practical Autodilution for ICP-MS and ICP-OES
January 20th 2025Gain insights into improving efficiency and accuracy in elemental analysis through automated dilution technology. Learn about the key capabilities of the Agilent ADS 2 system and its seamless integration with ICP-MS and ICP-OES workflows.
UV-Vis Spectroscopy: Exporting Your Measurement Out of the Instrument
January 20th 2025Optical fibers in ultraviolet-visible (UV-Vis) spectroscopy can enable measurements outside the traditional sample compartment. This paper details the components needed for fiber optic systems, such as couplers and probes, and reviews the performance of Agilent's Cary series instruments. It is crucial to choose the right fiber optic setup for a specific lab’s needs to ensure accurate and efficient measurements.