Some powders and rough surfaced solids change color as a function of temperature, a phenomenon known as thermochromism. Such phenomena can be effectively studied by UV-Visible spectroscopy in combination with a diffuse reflection accessory equipped with temperature-controlled reaction chamber, as demonstrated here with a thermal paint.
Some powders and rough surfaced solids change color as a function of temperature, a phenomenon known as thermochromism. Such phenomena can be effectively studied by UV-Visible spectroscopy in combination with a diffuse reflection accessory equipped with temperature-controlled reaction chamber, as demonstrated here with a thermal paint.
Figure 1
Many materials undergo electronic transitions upon heating which can be studied by UV-Vis spectroscopy. Most often, the samples studied by this method are liquids. The liquid is simply poured into a thermostated cuvette for transmission analysis. Analysis of powders and other solids is less straightforward, unless they can be dissolved and measured as a liquid.
For non-soluble solids, the only feasible methods for such analysis in the UV-Vis are specular reflectance and diffuse reflectance. The former is suitable for highly reflective materials; the latter for powders and roughened solids. Both require a mirror assembly to direct the radiation to and from the sample, in addition to a thermostated sampling stage.
This note explores the use of diffuse reflectance to probe the temperature-induced color changes of a rough surfaced solid at varied temperatures.
The diffuse reflectance measurements were carried out in a commercial UV-Vis spectrometer, using Harrick's Praying Mantis™ diffuse reflection accessory equipped with its High Temperature Reaction Chamber. The temperature of the chamber was controlled using Harrick's Automatic Temperature Controller. The controller was connected to the reaction chamber and initially auto-tuned at 40°C. Several measurements were then taken around that temperature.
The sample investigated was a Thermal Liquid Crystal Paint (Edmund Scientific, 3053489) with color changes in the 40–45°C temperature range. The paint was applied to one end of a sandblasted 316-stainless steel rod which fits into the sample cup of the reaction chamber.
The diffuse reflectance spectra were measured using a UV-Vis spectrometer in its double-beam mode with an open slit, a 2-nm SBW and a 5-nm data interval.
Figure 2 shows the spectra of the sample recorded at three different temperatures. At the lowest temperature, the spectrum has a peak at 500 nm, in the green region of the visible. As the sample is heated, the peak at 500 nm decreases in intensity and another peak arises at 480 nm, in the blue. Thus this particular paint changes color in the blue-green region of the visible spectrum as a function of temperature.
Figure 2
In conclusion, it is clear that diffuse reflectance, using the Praying Mantis with its high temperature reaction chamber, is an effective way of measuring temperature induced color changes in the visible spectral region. Hence this method can be a useful tool for probing electronic transitions of powders and other solid materials at elevated temperatures.
Harrick Scientific Products, Inc.
141 Tompkins Ave., 2nd floor, Pleasantville, NY 10570
Tel. (914) 747-7202, Fax (914) 747-7409
The Essentials of Analytical Spectroscopy: Theory and Applications
January 23rd 2025This excerpt from The Concise Handbook of Analytical Spectroscopy, which spans five volumes, serves as a comprehensive reference, detailing the theory, instrumentation, sampling methods, experimental design, and data analysis techniques for each spectroscopic region.
Testing Solutions for Metals and PFAS in Water
January 22nd 2025When it comes to water analysis, it can be challenging for labs to keep up with ever-changing testing regulations while also executing time-efficient, accurate, and risk-mitigating workflows. To ensure the safety of our water, there are a host of national and international regulators such as the US Environmental Protection Agency (EPA), World Health Organization (WHO), and the European Union (EU) that demand stringent testing methods for drinking water and wastewater. Those methods often call for fast implementation and lengthy processes, as well as high sensitivity and reliable instrumentation. This paper explains how your ICP-MS, ICP-OES, and LC-MS-MS workflows can be optimized for compliance with the latest requirements for water testing set by regulations like US EPA methods 200.8, 6010, 6020, and 537.1, along with ISO 17294-2. It will discuss the challenges faced by regulatory labs to meet requirements and present field-proven tips and tricks for simplified implementation and maximized uptime.
Practical Autodilution for ICP-MS and ICP-OES
January 20th 2025Gain insights into improving efficiency and accuracy in elemental analysis through automated dilution technology. Learn about the key capabilities of the Agilent ADS 2 system and its seamless integration with ICP-MS and ICP-OES workflows.
UV-Vis Spectroscopy: Exporting Your Measurement Out of the Instrument
January 20th 2025Optical fibers in ultraviolet-visible (UV-Vis) spectroscopy can enable measurements outside the traditional sample compartment. This paper details the components needed for fiber optic systems, such as couplers and probes, and reviews the performance of Agilent's Cary series instruments. It is crucial to choose the right fiber optic setup for a specific lab’s needs to ensure accurate and efficient measurements.