Application Notebook
The lanthanide series is a series of metallic elements, with atomic numbers 58 through 71, which are - in order of increasing atomic number - cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium.
The lanthanide series is a series of metallic elements, with atomic numbers 58 through 71, which are — in order of increasing atomic number — cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. They have numerous commercial uses based on their individual chemical, optical, and nuclear properties. Examples of commercial use include use in control rods in nuclear reactors (gadolinium, dysprosium), as colors in glasses and enamels (praseodymium, neodymium, cerium), and as constituents in laser medium and solid state devices (neodymium and terbium).
Figure 1: Neodymium measurements with TSI LIBS Desktop Analyzer.
Lanthanides are often measured with spectroscopic means such as atomic absorption spectroscopy (AAS) and inductively coupled plasma (ICP) optical emission spectroscopy (OES). These methods involve acid digestion of the matrix prior to analysis. Direct analysis methods such as XRF can be problematic as the L series transitions used to analyze these elements often overlap the K series fluorescence from transition elements.
Figure 2: Europium measurements with TSI LIBS Desktop Analyzer.
The TSI LIBS Desktop Analyzer uses a technique known as laser induced breakdown spectroscopy (LIBS) to directly determine the elemental concentrations of lanthanides in materials. The examples below of lanthanide determination in graphite matrix illustrate that determination of dilute concentrations (low ppm) in many matrices is possible.
Figure 3: Lutetium measurements with TSI LIBS Desktop Analyzer.
TSI Inc.
500 Cardigan Rd, Shoreview, MN 55126
tel. (800) 874-2811
Website: www.tsi.com
Testing Solutions for Metals and PFAS in Water
January 22nd 2025When it comes to water analysis, it can be challenging for labs to keep up with ever-changing testing regulations while also executing time-efficient, accurate, and risk-mitigating workflows. To ensure the safety of our water, there are a host of national and international regulators such as the US Environmental Protection Agency (EPA), World Health Organization (WHO), and the European Union (EU) that demand stringent testing methods for drinking water and wastewater. Those methods often call for fast implementation and lengthy processes, as well as high sensitivity and reliable instrumentation. This paper explains how your ICP-MS, ICP-OES, and LC-MS-MS workflows can be optimized for compliance with the latest requirements for water testing set by regulations like US EPA methods 200.8, 6010, 6020, and 537.1, along with ISO 17294-2. It will discuss the challenges faced by regulatory labs to meet requirements and present field-proven tips and tricks for simplified implementation and maximized uptime.