Marijuana, the common or slang term for cannabis in its herbal form, is one of the most widely used illicit drugs in the world.
This study focuses on United States Environmental Protection Agency (US EPA) Method 524.3 for volatile organic compounds (VOCs) in water using gas chromatography–mass spectrometry (GC–MS).
This application note demonstrates how Agilent’s Cary 630 FTIR easily meets the specifications of the US, European, Japanese, Chinese, Indian and International Pharmacopoeia. Its combination of compact size, design, intuitive and regulation-compliant software makes the Cary 630 FTIR an ideal instrument for pharmaceutical quality control.
Wednesday, June 23, 2021 at 11am EDT| 8am PDT| 4pm BST|5pm CEST
Strict and steady food control protects consumers against undesired contaminations and guarantees a high level of quality. This can be achieved by enforcing maximum allowable concentrations of hazardous substances. For simultaneous quantitative determination of the inorganic elements in wine, the ICP-MS technique is the preferred quality control tool. ICP-MS offers high sensitivity (trace detection), a wide dynamic range and a high sample throughput. In this study, commercially available red and white wines were investigated; 14 different elements were quantified simultaneously: arsenic, cadmium, caesium, copper, chromium, vanadium, iron, manganese, nickel, lead, selenium, tin, thallium and zinc. The developed ICP-MS method has a high accuracy, regardless of element concentration.
Polymer laminates typically make complex samples for infrared analysis, comprising multiple layers with defined thicknesses, in some cases less than 10 µm. When measuring extremely narrow laminate layers, the use of attenuated total reflectance (ATR) may provide improved spectra of the laminate cross-section, because ATR microscope objectives offer a greater spatial resolution than transmission due to additional magnification. This paper details the preparation of polymer laminate sample cross-sections and the collection of transmission and ATR spectra of various layers. Further analysis of the laminate spectra will also be explored utilizing a multivariate curve resolution (MCR) algorithm. An example laminate sample is examined utilizing all the tools available on a standard FT-IR microscope.
Polymer laminates typically make complex samples for infrared analysis, comprising multiple layers with defined thicknesses, in some cases less than 10 µm. When measuring extremely narrow laminate layers, the use of attenuated total reflectance (ATR) may provide improved spectra of the laminate cross-section, because ATR microscope objectives offer a greater spatial resolution than transmission due to additional magnification. This paper details the preparation of polymer laminate sample cross-sections and the collection of transmission and ATR spectra of various layers. Further analysis of the laminate spectra will also be explored utilizing a multivariate curve resolution (MCR) algorithm. An example laminate sample is examined utilizing all the tools available on a standard FT-IR microscope.
Demonstrates uRaman from TechnoSpex Pte. Ltd. is a promising instrument to determine the quality of the transferred single layered graphene on a 300-nm silicon dioxide (SiO2) substrate.
High-definition screening by gas chromatography–mass spectrometry (GC–MS) is shown to be a viable option for the reliable identification of odorous compounds in pork.
Spectral Systems has developed its Diamond XP-BBAR™ coating with spectral performance. The SNR is about 30% better through most of the analysis region of a typical FT-IR instrument.
The analysis of seals, mostly via the ink types, can provide evidence to authenticate the related documents and can play a key role in legal cases. In the present study, a method to discriminate red seal inks using Raman microscopy and Fourier transform infrared (FT-IR) spectroscopy was developed.
Nanostructured materials are expected to lead to the emergence of new products with enhanced functionalities. Their manufacture often requires the use of particles referred to as nano-objects, their aggregates, and their agglomerates. Laser-induced breakdown spectroscopy (LIBS) was deemed as a potential candidate for the detection of these materials in various contexts. This article discusses examples of the application of LIBS for workplace surveillance and process control of nano-objects.
The analysis of seals, mostly via the ink types, can provide evidence to authenticate the related documents and can play a key role in legal cases. In the present study, a method to discriminate red seal inks using Raman microscopy and Fourier transform infrared (FT-IR) spectroscopy was developed.
The analysis of seals, mostly via the ink types, can provide evidence to authenticate the related documents and can play a key role in legal cases. In the present study, a method to discriminate red seal inks using Raman microscopy and Fourier transform infrared (FT-IR) spectroscopy was developed.
A compact standoff Raman system can be used to detect hazardous chemicals and chemicals used in homemade explosives synthesis.
Manufacturing downtime hurts your bottom line - and any downtime caused by unintentional contamination during materials processing is especially painful. With regular adherence to impurity standards and cleanliness specifications it can be significantly reduced.
This work focuses on the analysis of precious metals in simulated digested precious metal buttons, with an added emphasis on assessing the lowest limits which can be accurately measured.
This work focuses on the determination of seven non-toxic elements usually found in drinking waters with the PerkinElmer PinAAcle 500 flame AA spectrometer.
A novel adaptation to inductively coupled plasma–mass spectroscopy (ICP-MS), mass cytometry provides researchers with a tool to study the complexity of biology at the single-cell level.
A novel adaptation to inductively coupled plasma–mass spectroscopy (ICP-MS), mass cytometry provides researchers with a tool to study the complexity of biology at the single-cell level.
An interlaboratory comparison study for the measurement of arsenic species in rice, kelp, and apple juice was carried out. The purpose of the study was to enable participating laboratories to evaluate their analytical capability to determine inorganic arsenic, arsenite, arsenate, monomethylarsonic acid, and dimethylarsinic acid, assess the intercomparability of the data generated, and look for any correlation trends between the results and the analytical procedures used.
An interlaboratory comparison study for the measurement of arsenic species in rice, kelp, and apple juice was carried out. The purpose of the study was to enable participating laboratories to evaluate their analytical capability to determine inorganic arsenic, arsenite, arsenate, monomethylarsonic acid, and dimethylarsinic acid, assess the intercomparability of the data generated, and look for any correlation trends between the results and the analytical procedures used.
An interlaboratory comparison study for the measurement of arsenic species in rice, kelp, and apple juice was carried out. The purpose of the study was to enable participating laboratories to evaluate their analytical capability to determine inorganic arsenic, arsenite, arsenate, monomethylarsonic acid, and dimethylarsinic acid, assess the intercomparability of the data generated, and look for any correlation trends between the results and the analytical procedures used.
An interlaboratory comparison study for the measurement of arsenic species in rice, kelp, and apple juice was carried out. The purpose of the study was to enable participating laboratories to evaluate their analytical capability to determine inorganic arsenic, arsenite, arsenate, monomethylarsonic acid, and dimethylarsinic acid, assess the intercomparability of the data generated, and look for any correlation trends between the results and the analytical procedures used.
A newly discovered method is described for generating gas-phase ions from volatile and nonvolatile compounds. The method, matrix-assisted ionization (MAI), is both simple and sensitive, requiring only the vacuum inherent with all mass spectrometers and a suitable matrix, eliminating the need for lasers, electric fields, nebulizing gas, and even heaters to generate gas-phase ions. MAI is applicable for the direct analysis of drugs from biological fluids and tissue without prior purification. By placing matrix only on a specific surface area of interest and exposure to the vacuum of the mass spectrometer, ions are observed from compounds within the targeted surface area of tissue exposed to the matrix solution, thus allowing rapid and simple interrogation of “features of interest.” The limit of detection for drug standards is low attomoles and clean full mass range mass spectra are obtained from low femtomoles of the drug.
The main objective of this study was to evaluate the capabilities of gas chromatography (GC) with time-of-flight mass spectrometry (MS) for screening pesticides in fruits and vegetables using a purpose-built accurate-mass database.
The main objective of this study was to evaluate the capabilities of gas chromatography (GC) with time-of-flight mass spectrometry (MS) for screening pesticides in fruits and vegetables using a purpose-built accurate-mass database.
A new method was developed and validated using automated on-line solid-phase extraction (SPE) with tandem mass spectrometry (MS). Urine samples were enzyme-hydrolyzed and diluted before detection. The validated method was applied to positive authentic urine samples to evaluate concordance with high performance liquid chromatography (HPLC)–MS-MS results.
A new method was developed and validated using automated on-line solid-phase extraction (SPE) with tandem mass spectrometry (MS). Urine samples were enzyme-hydrolyzed and diluted before detection. The validated method was applied to positive authentic urine samples to evaluate concordance with high performance liquid chromatography (HPLC)–MS-MS results.
The main objective of this study was to evaluate the capabilities of gas chromatography (GC) with time-of-flight mass spectrometry (MS) for screening pesticides in fruits and vegetables using a purpose-built accurate-mass database.