In this article, we describe the key factors that influence the overall size of a spectrometer, such as the diffraction grating groove density and detector size. Furthermore, we demonstrate compact Raman spectrometer designs as small as 30 mm × 30 mm in footprint by using highly dispersive gratings and uncooled detectors.
The transition of cannabis from an illegal drug to a drug for medical and even recreational use raises challenging questions for regulatory agencies and analytical chemists alike. Here, we show a selection of analytical techniques based on compact mass spectrometry in combination with three different sample inlets (atmospheric solids analysis probe), thin-layer chromatography, as well as classical liquid chromatography) for the detection and quantification of cannabinoids and pesticides in cannabis-related material and contraband.
The transition of cannabis from an illegal drug to a drug for medical and even recreational use raises challenging questions for regulatory agencies and analytical chemists alike. Here, we show a selection of analytical techniques based on compact mass spectrometry in combination with three different sample inlets (atmospheric solids analysis probe), thin-layer chromatography, as well as classical liquid chromatography) for the detection and quantification of cannabinoids and pesticides in cannabis-related material and contraband.
Because of the wide variety of ways counter drugs have been entering the pharmaceutical supply chain, there is an imminent need for quick and inexpensive methods to identify drug components and quantify active ingredients. Here, we report results illustrating the screening properties of solvent assisted ionization mass spectrometry (SAI-MS) and the quantitative properties of liquid chromatography (LC)-SAI-MS. These methods offer high sensitivity, versatility, and in combination, rapid turnaround time. Suspect samples of fexofenadine hydrochloride and hydroxychloroquine were rapidly screened and compared to their legal counterparts using SAI-MS.
Novel ionization processes provide gas-phase ions of a wide variety of materials using MS. These simple and sensitive methods operate from solution or a solid matrix. Both manual and automated platforms are described that allow rapid switching between the ionization methods of MAI, SAI, vSAI, and conventional ESI.
Antibody drug conjugates (ADCs) are an emerging category of biotherapeutic products based on monoclonal antibodies (mAbs) coupled to powerful cytotoxic drugs. The production of ADCs entails the formation of species with different number of conjugates drugs. The heterogeneity of ADCs species add to the complexity originating from the mAbs microvariability. Sheathless capillary electrophoresis-mass spectrometry (sheathless CE-MS) using complementary approaches was used to perform a detail characterization of brentuximab vedotin (Adcetris, Seattle Genetics). Sheathless CE-MS instrument used as nanoESI infusion platform was involved to perform the intact and middle-up analysis in native MS conditions. The nanoESI infusion approaches enabled estimation of the average drug to antibody ratio (DAR) alongside to drug load distribution. Sheathless CZE-MS/MS method developed was used to obtain from a single injection the characterization of the amino acid sequence with complete sequence coverage. In addition glycosylation and drug-loaded peptides could be identified from MS/MS spectra revealing robust information regarding their localizations and abundances. Drug-loaded peptide fragmentation mass spectra study demonstrated drug-specific fragments reinforcing the identifications confidence. Results reveal the ability of sheathless CZE-MS/MS method to characterize ADCs primary structure in a single experiment.
Nowadays, biotherapeutic proteins are available in different formats such as fusion proteins, monoclonal antibodies, or antibody-drug conjugates. The complexity of these molecules requires advanced and comprehensive characterization to guarantee their potency and safety. This work provides an overview of a methodology using an innovative capillary electrophoresis-tandem mass spectrometry coupling (CE-MS-MS) for the characterization of biologics primary structure. This method was applied to perform biosimilarity assessment between two mAbs, distinguishing minor differences like a sole amino acid substitution. Such a level of characterization is permitted by cumulating the specificities of both CE and high-resolution tandem MS using a sheathless interface, therefore renewing the interest for this type of coupling.
Antibody drug conjugates (ADCs) are an emerging category of biotherapeutic products based on monoclonal antibodies (mAbs) coupled to powerful cytotoxic drugs. The production of ADCs entails the formation of species with different number of conjugates drugs. The heterogeneity of ADCs species add to the complexity originating from the mAbs microvariability. Sheathless capillary electrophoresis-mass spectrometry (sheathless CE-MS) using complementary approaches was used to perform a detail characterization of brentuximab vedotin (Adcetris, Seattle Genetics). Sheathless CE-MS instrument used as nanoESI infusion platform was involved to perform the intact and middle-up analysis in native MS conditions. The nanoESI infusion approaches enabled estimation of the average drug to antibody ratio (DAR) alongside to drug load distribution. Sheathless CZE-MS/MS method developed was used to obtain from a single injection the characterization of the amino acid sequence with complete sequence coverage. In addition glycosylation and drug-loaded peptides could be identified from MS/MS spectra revealing robust information regarding their localizations and abundances. Drug-loaded peptide fragmentation mass spectra study demonstrated drug-specific fragments reinforcing the identifications confidence. Results reveal the ability of sheathless CZE-MS/MS method to characterize ADCs primary structure in a single experiment.
Nowadays, biotherapeutic proteins are available in different formats such as fusion proteins, monoclonal antibodies, or antibody-drug conjugates. The complexity of these molecules requires advanced and comprehensive characterization to guarantee their potency and safety. This work provides an overview of a methodology using an innovative capillary electrophoresis-tandem mass spectrometry coupling (CE-MS-MS) for the characterization of biologics primary structure. This method was applied to perform biosimilarity assessment between two mAbs, distinguishing minor differences like a sole amino acid substitution. Such a level of characterization is permitted by cumulating the specificities of both CE and high-resolution tandem MS using a sheathless interface, therefore renewing the interest for this type of coupling.
Antibody drug conjugates (ADCs) are an emerging category of biotherapeutic products based on monoclonal antibodies (mAbs) coupled to powerful cytotoxic drugs. The production of ADCs entails the formation of species with different number of conjugates drugs. The heterogeneity of ADCs species add to the complexity originating from the mAbs microvariability. Sheathless capillary electrophoresis-mass spectrometry (sheathless CE-MS) using complementary approaches was used to perform a detail characterization of brentuximab vedotin (Adcetris, Seattle Genetics). Sheathless CE-MS instrument used as nanoESI infusion platform was involved to perform the intact and middle-up analysis in native MS conditions. The nanoESI infusion approaches enabled estimation of the average drug to antibody ratio (DAR) alongside to drug load distribution. Sheathless CZE-MS/MS method developed was used to obtain from a single injection the characterization of the amino acid sequence with complete sequence coverage. In addition glycosylation and drug-loaded peptides could be identified from MS/MS spectra revealing robust information regarding their localizations and abundances. Drug-loaded peptide fragmentation mass spectra study demonstrated drug-specific fragments reinforcing the identifications confidence. Results reveal the ability of sheathless CZE-MS/MS method to characterize ADCs primary structure in a single experiment.
Antibody drug conjugates (ADCs) are an emerging category of biotherapeutic products based on monoclonal antibodies (mAbs) coupled to powerful cytotoxic drugs. The production of ADCs entails the formation of species with different number of conjugates drugs. The heterogeneity of ADCs species add to the complexity originating from the mAbs microvariability. Sheathless capillary electrophoresis-mass spectrometry (sheathless CE-MS) using complementary approaches was used to perform a detail characterization of brentuximab vedotin (Adcetris, Seattle Genetics). Sheathless CE-MS instrument used as nanoESI infusion platform was involved to perform the intact and middle-up analysis in native MS conditions. The nanoESI infusion approaches enabled estimation of the average drug to antibody ratio (DAR) alongside to drug load distribution. Sheathless CZE-MS/MS method developed was used to obtain from a single injection the characterization of the amino acid sequence with complete sequence coverage. In addition glycosylation and drug-loaded peptides could be identified from MS/MS spectra revealing robust information regarding their localizations and abundances. Drug-loaded peptide fragmentation mass spectra study demonstrated drug-specific fragments reinforcing the identifications confidence. Results reveal the ability of sheathless CZE-MS/MS method to characterize ADCs primary structure in a single experiment.
Ionic contaminants in the water used in UHPLC analyses with MS detection method lead to adduct formation and reduced analytical signals because of ion suppression. In MS, the preferred ion type is the protonated molecular ion, especially in peptide analysis, since the partially mobile proton charge enables more meaningful fragmentation analysis, as compared to a sodiated peptide ion.
Beyond the long-established, optical standard techniques of photometry and immunoassay, LC-API-MS-MS has opened new horizons for clinical pathology. This is related to biomedical research and standardization as well as to routine diagnostic testing. It can be expected that the latter field will see important growth, including the introduction of automated MS-based analyzer systems. This will shift the application of mass spectrometric tests from a few specialized laboratories to many standard clinical laboratories with a lower level of analytical expertise.
Understanding the proper ways to plan, run, and report proficiency tests will help you avoid errors and contamination.
QuEChERS is introduced to the discipline of forensic testing as a viable method for the extraction of pesticides and cannabinoids in various complex sample matrices.
This applications note presents an example of ppb sensitivity using a commercially available PAS system based on MEMs cantilever microphone technology together with a high power, narrow band and widely tunable mid-infrared OPO.
This installment describes the development of two novel X-ray diffraction (XRD) techniques that enable the rapid analysis of samples using handheld instrumentation for remote applications. Both techniques can be applied to unprepared samples in the field, which is a highly favorable characteristic in many applications since the time required for laboratory-based sample preparation is avoided.
Surface-enhanced Raman scattering (SERS) has been applied to the determination of the antioxidant butylated hydroxyanisole (BHA), commonly used in fatty foods and oils to prevent their oxidation. The use of SERS-Raman microscopy with an inexpensive homemade silver substrate allowed the direct determination of BHA in oils without any sample handling. Several edible and essential oils (used as flavorings) have been considered for this purpose.
Surface-enhanced Raman scattering (SERS) has been applied to the determination of the antioxidant butylated hydroxyanisole (BHA), commonly used in fatty foods and oils to prevent their oxidation. The use of SERS-Raman microscopy with an inexpensive homemade silver substrate allowed the direct determination of BHA in oils without any sample handling. Several edible and essential oils (used as flavorings) have been considered for this purpose.
Surface-enhanced Raman scattering (SERS) has been applied to the determination of the antioxidant butylated hydroxyanisole (BHA), commonly used in fatty foods and oils to prevent their oxidation. The use of SERS-Raman microscopy with an inexpensive homemade silver substrate allowed the direct determination of BHA in oils without any sample handling. Several edible and essential oils (used as flavorings) have been considered for this purpose.
Surface-enhanced Raman scattering (SERS) has been applied to the determination of the antioxidant butylated hydroxyanisole (BHA), commonly used in fatty foods and oils to prevent their oxidation. The use of SERS-Raman microscopy with an inexpensive homemade silver substrate allowed the direct determination of BHA in oils without any sample handling. Several edible and essential oils (used as flavorings) have been considered for this purpose.
ATR-FT-IR spectroscopy can provide rapid and portable measurements in forensic applications, demonstrating its ability to rapidly detect biomarkers and the presence of cocaine in fingernails.
Ensure coating performance and longevity, assess changes in the chemical composition of coatings under actual use. Learn how non-destructive FTIR analysis aids to make sure coatings meet their performance claims.
A famous and admired professor of analytical chemistry, Gary M. Hieftje, is officially retiring. He has been a prominent faculty member at Indiana University for 50 years, and a beloved mentor, colleague, and friend to many. In this special feature, we take a look at his many contributions, and his broad impact on the field.
For the correct treatment of urolithiasis, it is essential to determine the chemical composition of the stones in order to discover the underlying cause of their formation. FTIR is one of the most powerful and cost-efficient methods for analysis of kidney stones.
Adhesives are a group of materials that are found extensively in manufacturing and production industries and are of great interest for quality control and failure analysis. This paper discusses the use of an array detector in conjunction with ultrafast mapping to produce kinetic chemical imaging to monitor the curing process in a two-part epoxy resin. This technique allows for simultaneous analysis of both the kinetics of the epoxy reaction along with the spatial information of the reaction. This kinetico-spatial information gives insight about localized domains that form when the epoxy is mixed and how the reaction progresses.
Multiple angle incidence resolution spectroscopy (MAIRS) has proven useful for characterization of the in-plane (IP) and out of plane (OP) vibrations of thin films on solid substrates. The MAIRS technique computes the IP and OP spectra by performing a regression analysis on a series of oblique-incidence transmission spectra collected over a range of angles of a single thin film sample mounted on a transparent substrate. MAIRS replaces the more traditional technique of the collection of a transmission spectrum of a thin film on a transparent substrate, followed by collection of a reflection absorption spectrum of the same film on a metallic substrate. Often times, preparation of the same thin film on different substrates with different chemical and physical properties can be problematic. This paper will discuss details of the electromagnetic theory of MAIRS, and demonstrate its use in producing the IP and OP spectra of several thin film samples.
In recent years there has been increased use of silicones in medicine, especially for medicinal implants. Quality control of intracorporeal-used silicones is an important task for ensuring patients’ health, but it is also a challenging one. The traditional mechanical methods used for the quality control of these silicone products, like rheometric measurements, tend to waste a lot of raw material. In this study, near-infrared spectroscopy (NIRS) has been used to replace the traditional method (rheometric measurements of control samples) using rheometry only as reference method to generate different calibration models. The applicability of NIRS as non-invasive analysis method is proven and the developed calibration models for curing processes of a silicone-adhesive at different temperatures are shown.
In recent years there has been increased use of silicones in medicine, especially for medicinal implants. Quality control of intracorporeal-used silicones is an important task for ensuring patients’ health, but it is also a challenging one. The traditional mechanical methods used for the quality control of these silicone products, like rheometric measurements, tend to waste a lot of raw material. In this study, near-infrared spectroscopy (NIRS) has been used to replace the traditional method (rheometric measurements of control samples) using rheometry only as reference method to generate different calibration models. The applicability of NIRS as non-invasive analysis method is proven and the developed calibration models for curing processes of a silicone-adhesive at different temperatures are shown.