This article provides useful tips for smooth validation of multi-analyte LC–MS-MS methods and summarizes important validation outcomes for 295 analytes, including more than 200 mycotoxins.
This article provides useful tips for smooth validation of multi-analyte LC–MS-MS methods and summarizes important validation outcomes for 295 analytes, including more than 200 mycotoxins.
Raman spectroscopy is applied to quality control of agricultural products with greater frequency, and can also be used to refine regulatory criteria for both agricultural and environmental monitoring. It is now integrated into everything from hand held SERS detectors to unmanned aerial vehicles to monitor the gamut from genetic variation to soil and water content. Development opportunities, particularly with bundled technologies, continue to emerge as demand for quality assurance increases.
Raman spectroscopy has gained a lot of interest in recent years. Capable of yielding chemical identification/quantification information, it is a possible alternative to the more wide-spread, complimentary techniques of FT-IR and near-IR spectroscopy. tec5USA specializes in UV-VIS-NIR and Raman spectroscopic instrumentation for process control. Their Systems Product Manager discusses Raman spectroscopy and some of the challenges of incorporating this method into process control.
The power of nontargeted metabolite profiling is illustrated in a study focused on the determination of molecular markers in malting barley that are predictive of desirable malting quality for brewing applications. The metabolite extraction, detection, and analysis methods are highthroughput and reproducible, and therefore, this approach represents a practical addition to the plant breeder’s molecular toolbox.
Learn how to measure properties of Gold Nanoparticles that have unique optical, electronic, and thermal properties and used in a wide range of applications including diagnostics assays, microscopy and electronics.
Efficient and accurate measurement of mercury concentration is a challenge. A direct sample preparation method for reliable ICP-OES mercury measurement would be invaluable to chemical manufacturers, testing laboratories, and other industries. Historically, ICP-OES Hg measurements have been plagued by poor Hg detection limits, severe carryover effects, and sample instability. In this study, we present a method of sample preparation for ICP-OES mercury analysis in various reagent chemical compounds. This sample preparation method is straightforward and direct, allowing mercury analysis in a variety of reagent chemicals without digestion.
Efficient and accurate measurement of mercury concentration is a challenge. A direct sample preparation method for reliable ICP-OES mercury measurement would be invaluable to chemical manufacturers, testing laboratories, and other industries. Historically, ICP-OES Hg measurements have been plagued by poor Hg detection limits, severe carryover effects, and sample instability. In this study, we present a method of sample preparation for ICP-OES mercury analysis in various reagent chemical compounds. This sample preparation method is straightforward and direct, allowing mercury analysis in a variety of reagent chemicals without digestion.
Efficient and accurate measurement of mercury concentration is a challenge. A direct sample preparation method for reliable ICP-OES mercury measurement would be invaluable to chemical manufacturers, testing laboratories, and other industries. Historically, ICP-OES Hg measurements have been plagued by poor Hg detection limits, severe carryover effects, and sample instability. In this study, we present a method of sample preparation for ICP-OES mercury analysis in various reagent chemical compounds. This sample preparation method is straightforward and direct, allowing mercury analysis in a variety of reagent chemicals without digestion.
Efficient and accurate measurement of mercury concentration is a challenge. A direct sample preparation method for reliable ICP-OES mercury measurement would be invaluable to chemical manufacturers, testing laboratories, and other industries. Historically, ICP-OES Hg measurements have been plagued by poor Hg detection limits, severe carryover effects, and sample instability. In this study, we present a method of sample preparation for ICP-OES mercury analysis in various reagent chemical compounds. This sample preparation method is straightforward and direct, allowing mercury analysis in a variety of reagent chemicals without digestion.
A summary of the most recent advances in sample preparation, instrumentation, and data-processing techniques for MALDI-IMS
Compositional Depth Profile (CDP) using the LECO GDS950 rapidly provides analysis of various galvanized coatings on steel.
Combined investigations in the far and mid infrared region in a single scan can offer great value for the analysis of polymeric materials. With the use of optical components optimized for combined FIR-MIR spectroscopy, consisting of a wide range mid to far IR beamsplitter and detector, the investigation of both spectral regions in single step is possible.
The US EPA has implemented an exposure research program aimed at conducting drinking water research on methods as part of the Microbiological and Chemical Exposure Assessment. This research is aimed at evaluating the chemical pollutants and their role and levels in which there is an unacceptable risk to either humans or wildlife, as well as evaluating the methodologies currently being used to determine levels of chemical pollutants.
The US EPA has implemented an exposure research program aimed at conducting drinking water research on methods as part of the Microbiological and Chemical Exposure Assessment. This research is aimed at evaluating the chemical pollutants and their role and levels in which there is an unacceptable risk to either humans or wildlife, as well as evaluating the methodologies currently being used to determine levels of chemical pollutants.
The US EPA has implemented an exposure research program aimed at conducting drinking water research on methods as part of the Microbiological and Chemical Exposure Assessment. This research is aimed at evaluating the chemical pollutants and their role and levels in which there is an unacceptable risk to either humans or wildlife, as well as evaluating the methodologies currently being used to determine levels of chemical pollutants.
The US EPA has implemented an exposure research program aimed at conducting drinking water research on methods as part of the Microbiological and Chemical Exposure Assessment. This research is aimed at evaluating the chemical pollutants and their role and levels in which there is an unacceptable risk to either humans or wildlife, as well as evaluating the methodologies currently being used to determine levels of chemical pollutants.
The US EPA has implemented an exposure research program aimed at conducting drinking water research on methods as part of the Microbiological and Chemical Exposure Assessment. This research is aimed at evaluating the chemical pollutants and their role and levels in which there is an unacceptable risk to either humans or wildlife, as well as evaluating the methodologies currently being used to determine levels of chemical pollutants.
The US EPA has implemented an exposure research program aimed at conducting drinking water research on methods as part of the Microbiological and Chemical Exposure Assessment. This research is aimed at evaluating the chemical pollutants and their role and levels in which there is an unacceptable risk to either humans or wildlife, as well as evaluating the methodologies currently being used to determine levels of chemical pollutants.
Nowadays, biotherapeutic proteins are available in different formats such as fusion proteins, monoclonal antibodies, or antibody-drug conjugates. The complexity of these molecules requires advanced and comprehensive characterization to guarantee their potency and safety. This work provides an overview of a methodology using an innovative capillary electrophoresis-tandem mass spectrometry coupling (CE-MS-MS) for the characterization of biologics primary structure. This method was applied to perform biosimilarity assessment between two mAbs, distinguishing minor differences like a sole amino acid substitution. Such a level of characterization is permitted by cumulating the specificities of both CE and high-resolution tandem MS using a sheathless interface, therefore renewing the interest for this type of coupling.
The quality and safety of ready-to-eat packaged foods-such as salads-is very difficult for consumers and suppliers to judge, and improving this situation is the focus of a Europe-wide research project. Part of the project is devoted to the development of better methods to detect and analyze the volatile organic compounds released from relevant food types, in an effort to identify biomarkers for quality and microbial contamination. This article examines one important food (melon) and shows how a method based on thermal desorption (TD) with gas chromatography-time-of-flight-mass spectrometry (GC–TOF-MS) can elucidate how key volatiles vary with time of storage and with the size of the melon pieces. The article highlights how such analytical information will be of value in efforts to improve the quality and safety of ready-to-eat foods.
This cost-effective approach has a limit of detection well below 1µg As/L and a linear range that extends to >100 µg As/L.
This work addresses two challenges: developing a technique capable of measuring ppb levels of hormones, and developing an SPLE technique capable of extracting contaminants and hormones from a single sample without additional cleanup steps.
Our annual spectroscopy salary and employment survey shows encouraging increases, but in many areas, spectroscopists have simply gained back ground that had been lost in recent years.
The different aspects of food metabolomics are described using tomato taste as an example.
Biodiesel fuel is easily analyzed using the Prodigy7 ICP. The detection limit of Teledyne Leeman Lab’s Prodigy7 ICP-OES readily exceeds the requirements of the ASTM D-6751 Standard against which biodiesel must be measured. Samples are easily prepared by dilution with a suitable solvent. Sample spike recoveries and reference standards results indicate that the method is suitable for the analysis of biodiesel fuels and that matrix interferences are not an issue.
An infrared transmission spectrum of lens tissue was collected and compared with a sample spectrum collected in the FT-IR sample compartment. Benefits of using an integrating sphere are discussed.
The different aspects of food metabolomics are described using tomato taste as an example.
Application of simultaneous absorbance and fluorescence excitation-emission matrix (EEM) analysis to identify and classify freshwater planktonic algal species. Main foci were two major potentially toxic cyanobacterial species associated with algal bloom events in the Great Lakes.