November 19th 2024
Microplastics (MPs) and nanoplastics (NPs) are emerging contaminants requiring robust analytical techniques for identification and quantification in diverse environmental and biological matrices. This review highlights various spectroscopy methods, such as Raman, FT-IR, NIR, ICP-MS, Fluorescence, X-ray, and NMR detailing their methodologies, sample handling, and applications for characterizing MPs and NPs.
Portable Near-Infrared Detection of Melamine in Sports Supplements: A Breakthrough in Rapid Testing
July 17th 2024Researchers have developed rapid quantification models to detect melamine adulteration in sports nutrition supplements using benchtop and portable near-infrared (NIR) spectroscopy instruments. This study highlights the efficiency of these methods in ensuring the safety and quality of sports supplements.
Advanced IR Spectroscopy Techniques Revolutionize Micro- and Nanoplastics Research
July 16th 2024A recent review highlights the application of cutting-edge infrared (IR) spectroscopic techniques in analyzing micro- and nanoplastics (MNPs), providing valuable guidance for researchers to select suitable instrumentation for analysis. The study emphasizes the need for reliable tools to understand the environmental and health risks associated with these pollutants.
Asteroids as Near-Earth Objects: A Detailed Near-Infrared Look into Composition and Origins
July 2nd 2024A comprehensive study of small near-Earth objects (NEOs) using spectroscopy reveals composition, source regions, and rotational properties. The research identifies S-complex asteroids as the most abundant and introduces a new subclass within this complex, yielding detailed information on the characteristics and origins of these celestial bodies.
Cutting-Edge vis-NIR Hyperspectral Imaging Enhances Bloodstain Identification in Forensic Science
June 25th 2024Forensic scientists have made significant strides in bloodstain identification, leveraging advanced hyperspectral imaging and machine learning to distinguish between human and animal bloodstains with remarkable accuracy.
Affordable Near-Infrared Open-Source Wearable Brain-Monitoring Device Revolutionizes Neuroscience
Published: June 20th 2024 | Updated: June 21st 2024Researchers from Vanderbilt University and Stanford University School of Medicine have developed a low-cost, wearable functional near-infrared spectroscopy (fNIRS) headband. This device, described as the first open-source, wireless fNIRS headband system, enables neuroimaging in naturalistic settings, making brain monitoring more accessible and versatile.
A Brief Review of the Latest Spectroscopic Research in Environmental Analysis
June 18th 2024Spectroscopic analytical techniques are crucial for the analysis of environmental samples. This review emphasizes the latest advancements in several key spectroscopic methods, including atomic, vibrational, molecular, electronic, and X-ray techniques. The applications of these analytical methods in detecting contaminants and other environmental applications are thoroughly discussed.
Cutting-Edge Near-infrared Wearable Neuroimaging Technologies Promise New Insights
June 18th 2024Advances in wearable, high-density functional near-infrared spectroscopy (fNIRS) and diffuse optical tomography (DOT) technologies are paving the way for real-world neuroscience applications, enabling high-resolution imaging of the human cortex in various environments. This new technology promises significant improvements in understanding brain function during naturalistic activities.
New Method using vis-NIR and MIR for Detecting Fusarium Head in Wheat
June 17th 2024Detecting Fusarium head blight (FHB) in wheat kernels and flour is important in ensuring food safety in the agriculture industry. Here, we recap a recent study that uses non-destructive spectroscopic techniques and machine learning algorithms to detect FHB.
Flexible Near-Infrared Photodetectors Pave the Way for Advanced Wearable Technology
June 12th 2024A team of researchers from RIKEN and The University of Tokyo have developed flexible near-infrared organic photodetectors (OPDs) with significant implications for wearable technology. These devices promise enhanced non-invasive biosensing and bio-imaging capabilities, paving the way for more responsive and intelligent wearable applications.
Wearable Near-Infrared Technology Tested for Monitoring Athletic Performance
June 10th 2024Researchers from the University of Saarland in Germany investigated the reliability and side differences in muscle oxygen saturation (SmO2) measurements using a wearable near-infrared monitor on trained cyclists. The study found that the device shows good reliability but highlighted significant side differences, which must be considered in practical applications.
A Look at the Role of Functional Near-Infrared Spectroscopy on Mitochondrial Disorders
June 6th 2024A recent study from the Children’s National Health System and George Washington University explored how near-infrared (NIR) spectroscopy can be used to improve epilepsy detection in patients with mitochondrial disorders.
Unveiling the Giants: Mid-Infrared Observations of the Solar System's Largest Planets
June 5th 2024A century of mid-infrared observations has significantly advanced our understanding of the atmospheres of the giant planets in our solar system. A researcher from the University of Leicester in the United Kingdom and Universidad Adolfo Ibáñez in Chile has reviewed the developments in this field and the potential of the James Webb Space Telescope (JWST) to further enhance our knowledge of these planets.
Deep Learning Advances Gas Quantification Analysis in Near-Infrared Dual-Comb Spectroscopy
May 15th 2024Researchers from Tsinghua University and Beihang University in Beijing have developed a deep-learning-based data processing framework that significantly improves the accuracy of dual-comb absorption spectroscopy (DCAS) in gas quantification analysis. By using a U-net model for etalon removal and a modified U-net combined with traditional methods for baseline extraction, their framework achieves high-fidelity absorbance spectra, even in challenging conditions with complex baselines and etalon effects.
New Near-Infrared Machine Learning Technique Identifies Dangerous Blood for Transfusion Safety
May 6th 2024Researchers in China have developed a cutting-edge machine learning approach that can detect chylous blood in blood intended for transfusion with more than 90% accuracy. This development promises to significantly reduce the risks associated with blood transfusions and improve the efficiency of blood donation centers.
New Probes for NIR Monitoring of Polymer Injection Molding Composition in Real-Time
May 2nd 2024Researchers from Kyoto University and Japan's National Institute of Advanced Industrial Science and Technology have developed innovative probes to monitor the chemical composition of biodegradable polymer blends during injection molding. This breakthrough could lead to improved production efficiency and reduced waste in the polymer industry.