A rapid, accurate, and precise method for the quantification of trypsin inhibitor activity was evaluated. The method utilizes alpha hydroxyl acid capped oligo-lysines [hydroxy acid (Lys)n] or alpha hydroxyl acid capped oligo-lysines-methionine [hydroxy acid (Lys-Met)] as substrates. Hydrolysis of the oligopeptides yields unique chemical residues that were readily quantified with electrospray–mass spectrometry (ESI-MS). Accuracy and precision of the approach compared favorably with that of the standard test method.
Single-reaction-chamber (SRC) microwave digestion was used for the digestion of pharmaceutical samples before inductively coupled plasma–mass spectrometry (ICP-MS) analysis according to draft USP chapters <232> and <233>.
Lithium-based batteries are key for moving away from the combustion of fossil fuels at the point of use. ICP-OES and ICP-MS methods can measure trace-element impurities that may affect battery performance.
Crop development to improve yield or disease resistance has been explored for centuries and the technologies to measure these improvements have subsequently become complex. The use of transgenes in crop plants is a more technically advanced approach than traditional breeding and the success of this approach is best assessed using modern techniques that accurately quantify the desired traits. Here, we applied targeted liquid chromatography–mass spectrometry (LC–MS) using synthetic stable isotope–labeled peptides to identify and quantify the relative levels of transgenic to native protein.
A discovery-based, untargeted metabolomics analysis of hundreds of yeast metabolites under robust, controlled extraction conditions followed by identification is described.
Crop development to improve yield or disease resistance has been explored for centuries and the technologies to measure these improvements have subsequently become complex. The use of transgenes in crop plants is a more technically advanced approach than traditional breeding and the success of this approach is best assessed using modern techniques that accurately quantify the desired traits. Here, we applied targeted liquid chromatography–mass spectrometry (LC–MS) using synthetic stable isotope–labeled peptides to identify and quantify the relative levels of transgenic to native protein.
An update on the sample preparation and LC–MS-MS tools available for allergen detection, as well advantages of those techniques.
Nitrile rubber materials were studied using flash analytical pyrolysis-GC–MS to demonstrate that this technique is a good tool to identify the additives in nitrile rubber.
The authors discuss the use of serial coulometric flow cells coupled online with electrospray ionization mass spectrometry in predictive assays for absorption, distribution, metabolism, excretion, toxicity (ADME/Tox), and stability implemented at early stages of drug discovery.
Fast turnaround time is critical in the clinical testing environment. Here, fast liquid chromatography (LC) technologies were utilized for the comprehensive assay of commonly prescribed pain management drugs in under 2 min. The use of fast LC also provided significantly improved sensitivity. A mini-validation for these analytes in human urine was performed and acceptable values for accuracy, precision, linearity, lot-to-lot variability, and matrix effects were demonstrated for each analyte.
A "Smart" Oxygen Cuvette has been developed by coating the inner surface of a plastic (PMMA) cuvette with sol-gel based oxygen-sensitive indicator material. This new oxygen sensing system monitors the dissolved oxygen in samples for biological and medical applications.
The increasing use of pesticide testing coupled with reductions in maximum permissible residue levels of pesticides in food have driven demand for fast, sensitive, and cost-effective analytical methods for high-throughput screening of multiclass pesticides in food. Detection of 510 pesticides at low parts-per-billion levels can be achieved within minutes using orbital trap technology. The high resolving power of these systems enables accurate mass confirmation of all compounds, including isobaric pesticides. This article will provide an overview of current legislation and illustrate how mass spectrometry instrumentation can enable fast and accurate pesticide screening.
In this article, the authors discuss the advantages of using a microbore UHPLC system coupled with a tandem mass spectrometer for the quantitation of in vivo pharmacokinetic samples.
Those fond of puns point out that mass spectrometry (MS) has become ever more focused in the last two decades, while at the same time offering ever more information. The dynamic market for biotherapeutics has driven a number of developments, particularly following the paradigm of well-characterized biopharmaceutical products (WCBP) (1,2). Partly as a result of automation and interfacing, those trained in biological or biochemical disciplines now use mass spectrometers routinely. This also means that the sorts of questions asked of MS have changed. Coping with biomolecule heterogeneity is a key challenge, not generally an issue for small molecule drugs. The data complexity means that mass information alone is insufficient. And at the submission stage, regulators are increasingly concerned about tertiary structure and conformation, something that was not previously an analytical requirement (2). Adding polyethylene glycol (PEG) to already heterogeneous molecules to prolong their half-lives in the body raises..
A big question in forensic science today is, “How do we best report uncertainty?” The answer to which approach is “best” turns out to be surprisingly complex, for many reasons.
Demonstrating the ability of PerkinElmer’s Spectrum 3 to measure in multiple regions of the infrared spectrum to provide an all-in-one infrared solution for a variety of markets
This article presents an efficient analytical workflow for protein characterization using LC–MS.
Application notes are a great opportunity for suppliers to inform the scientific marketplace about the latest applications and areas of method development.
// You can adjust the form size here: var DrupalLeadsFormWidth = 870; var DrupalLeadsFormHeight = 2500;
Gas chromatography combined with atmospheric-pressure chemical ionization (APCI) was used to analyze high-molecular-weight phthalates.
A drug-eluting stent (DES) is an expandable metal alloy framework placed into narrowed coronary arteries that slowly releases a drug coating to treat atherosclerosis. Production of DES is a labor-intensive batch process that requires very tight control. Fourier Transform Near-InfraRed spectroscopy (FT-NIR) is an efficient technique to perform accurate quantification of the different components in DES coating solutions.
Coal-to-ethylene glycol is the process by which ethylene glycol is synthesized from coal instead of traditional methods using petroleum as the raw material. This study demonstrates that Fourier Transform Infrared Spectroscopy (FT-IR) can be a reliable alternative to simultaneously measure methyl nitrite and other process gases (such as CO and NO) using a single ABB analyzer.
This article describes measurements of isotopes of hydrogen, boron, carbon, nitrogen, oxygen, and chlorine using laser ablation molecular isotopic spectrometry (LAMIS).
Low concentration natural methanol exists in most alcoholic beverages and usually causes no immediate health threat.
The authors show that dynamic reaction cell ICP MS can eliminate a number of argon- and carbon-based polyatomic interferences, allowing the determination of many critical elements in problematic organic compounds found in the semiconductor industry.
The authors show that high resolution 1H nuclear magnetic resonance (NMR) spectroscopy can be used to study biofilm metabolism under environmentally relevant conditions in a minimally invasive way.
The collection of blood-derived samples from preclinical and clinical trial studies onto paper-based, Guthrie-type cards is gaining momentum within the pharmaceutical industry. This approach holds the potential to minimize animal usage, improve data quality, and reduce shipping costs. However, the small sample volumes and extra matrix effects from the cards result in method development and sensitivity challenges for bioanalysts. Here, we present a discussion on the analytical challenges that both liquid chromatography and mass spectrometry face as well as present some potential solutions to these issues.
The collection of blood-derived samples from preclinical and clinical trial studies onto paper-based, Guthrie-type cards is gaining momentum within the pharmaceutical industry. This approach holds the potential to minimize animal usage, improve data quality, and reduce shipping costs. However, the small sample volumes and extra matrix effects from the cards result in method development and sensitivity challenges for bioanalysts. Here, we present a discussion on the analytical challenges that both liquid chromatography and mass spectrometry face as well as present some potential solutions to these issues.
Some parts of the FDA’s new draft guidance for Development and Submission of NIR Analytical Procedures are reviewed and critiqued. What’s in it for spectroscopists?