The structural complexity of monoclonal antibodies (mAbs) challenges the capabilities of even the most advanced chromatography and mass spectrometry techniques. This study examines the use of micro-pillar array columns in combination with mass spectrometry for peptide mapping of both mAbs and antibody–drug conjugates (ADCs).
Low concentration natural methanol exists in most alcoholic beverages and usually causes no immediate health threat.
The authors discuss a noninvasive method for determining early indications of the rejection of a kidney transplant.
Spectroscopy's annual overview of new instrumentation presented at the PittCon conference.
BaySpec, Inc. has developed a complete line of 1064 nm excitation, dispersive Raman systems that offer maximum reduction in fluorescence interference from biological samples and thus making them very useful tools for biofuel research.
Many volatile organic compounds (VOCs) found in a variety of consumer products are potentially harmful to human health and the environment. Within industry, to regulate product safety and quality, methods for measuring specific VOCs in a product, typically by thermal desorption gas chromatography–mass spectrometry (TD-GC–MS), are implemented. Such analysis provides a comprehensive VOC profile. However, the nature of some products, such as food, can be chemically complex. Within this complexity, trace-level or coeluting compounds can be difficult or time-consuming to identify. As a potential solution, new software tools are being developed to automate interpretation of the data.
Ultraviolet (UV) spectrophotometry has a well-deserved niche. Many UV-Vis instruments claim to work to the deep UV. Few instruments optimize for, or cater to, the 120 to 400 nm region. Development and manufacture of ultraviolet lasers, optics, crystalline materials, and resonance Raman instruments, as well as basic research, require a broadly useful instrument for analysis, characterization, and test. Enter McPherson's Vacuum Ultraviolet Analytical Spectrophotometer (VUVAS.)
The authors discuss an approach by a manufacturer of calibration standards and certified reference materials to standardize the reporting of uncertainty associated with certified values quoted on a certificate of analysis.
This article introduces the application of high-resolution ultrasonic spectroscopy for the analysis of emulsions and suspensions.
Diamond ATR has become one of the most commonly used FT-IR spectroscopy methods. However, the strong diamond lattice bands in the 2300–1900 cm-1 region make it difficult to measure the functional groups from nitriles, isocyanates, isothiocyanates, diimides, azides, and ketenes that would normally appear in that region. This applications note compares the sensitivity of a single-reflection ATR to multiple-reflection ATR for the nitrile functional group infrared transition.
In this article, the authors discuss the advantages of using a microbore UHPLC system coupled with a tandem mass spectrometer for the quantitation of in vivo pharmacokinetic samples.
A method is illustrated for the simultaneous analysis of ethyl glucuronide and ethyl sulfate in human urine samples.
Identifying contaminants in materials is a common troubleshooting need for which FT-IR spectroscopy is ideally suited. Thermo Scientific OMNIC Specta software provides a unique and powerful tool to assist the analyst to quickly identify unexpected constituents. The OMNIC? Specta? Contaminant Search feature allows for rapid investigations that can save time and minimize the impact of product issues.
Application notes are a great opportunity for suppliers to inform the scientific marketplace about the latest applications and areas of method development.
The authors describe a new method for making faster measurements of multidimensional NMR spectra. The technique involves acquiring a small number of projections and using them to reconstruct the entire spectrum.
Despite the advantages of soft ionization ion-source technologies for improving confidence in the identification of a range of challenging analytes, soft ionization remains a niche technique for gas chromatography–mass spectrometry (GC–MS).
This case study demonstrates how the Tactic-ID GP handheld Raman analyzer was used to detect contamination in a commercial hand sanitizer.
Those fond of puns point out that mass spectrometry (MS) has become ever more focused in the last two decades, while at the same time offering ever more information. The dynamic market for biotherapeutics has driven a number of developments, particularly following the paradigm of well-characterized biopharmaceutical products (WCBP) (1,2). Partly as a result of automation and interfacing, those trained in biological or biochemical disciplines now use mass spectrometers routinely. This also means that the sorts of questions asked of MS have changed. Coping with biomolecule heterogeneity is a key challenge, not generally an issue for small molecule drugs. The data complexity means that mass information alone is insufficient. And at the submission stage, regulators are increasingly concerned about tertiary structure and conformation, something that was not previously an analytical requirement (2). Adding polyethylene glycol (PEG) to already heterogeneous molecules to prolong their half-lives in the body raises..
Traditionally the analysis of volatile liquids by FTIR spectroscopy has always entailed a sealed fixed pathlength cell.
The misuse of androgenic anabolic steroids in sports was banned in 1976 by the International Olympic Committee and global sports community. The illegal use of anabolic steroids has reached disturbing levels worldwide. This worldwide problem is fueled partially by an ever-increasing demand for better athletic performance. The World Anti-Doping Agency has formulated strict guidelines for minimum allowable concentrations of exogenous anabolic steroids and their metabolites. The standard test methods for doping control are analyzed in urine samples with trimethyl-silyl derivatization. Urine is a complex and difficult biological matrix. This research shows the advantages of using comprehensive two-dimensional gas chromatography–time-of-flight-mass spectrometry (GCÃ-GC–TOF-MS) and illustrates the capability of GCÃ-GC-TOF-MS to be an effective instrumental option for antidoping control screening.
Those fond of puns point out that mass spectrometry (MS) has become ever more focused in the last two decades, while at the same time offering ever more information. The dynamic market for biotherapeutics has driven a number of developments, particularly following the paradigm of well-characterized biopharmaceutical products (WCBP) (1,2). Partly as a result of automation and interfacing, those trained in biological or biochemical disciplines now use mass spectrometers routinely. This also means that the sorts of questions asked of MS have changed. Coping with biomolecule heterogeneity is a key challenge, not generally an issue for small molecule drugs. The data complexity means that mass information alone is insufficient. And at the submission stage, regulators are increasingly concerned about tertiary structure and conformation, something that was not previously an analytical requirement (2). Adding polyethylene glycol (PEG) to already heterogeneous molecules to prolong their half-lives in the body raises..
Webinar Date/Time: Thursday, September 26, 2024 Morning Session: 10:00 AM EDT | 7:00 AM PDT | 3:00 PM BST | 4:00 PM CEST Afternoon Sesson: 12:30 PM EDT | 9:30 AM PDT | 5:30 PM BST | 6:30 PM CEST
The method presented here allows for the accurate, precise, and robust speciation, profiling, and quantification of cannabinoids in hemp oil extracts and commercial cannabinoid products for research and development laboratories.
This fast, automated method was shown to be accurate and precise for 16 liquid sweeteners, and is likely more accurate than Karl Fischer titration.
The authors explain some of the primary differences between quadrupole and time-of-flight mass analyzers and provide information regarding the benefits of each in their use for gas chromatography applications.
Raman measurement on microscopic inclusions in fluorescent materials requires the ability to measure in small volumes, excellent throughput, and long wavelength excitation such as 1064 nm for fluorescence reduction.
Low concentration natural methanol exists in most alcoholic beverages and usually causes no immediate health threat.
The increasing use of pesticide testing coupled with reductions in maximum permissible residue levels of pesticides in food have driven demand for fast, sensitive, and cost-effective analytical methods for high-throughput screening of multiclass pesticides in food. Detection of 510 pesticides at low parts-per-billion levels can be achieved within minutes using orbital trap technology. The high resolving power of these systems enables accurate mass confirmation of all compounds, including isobaric pesticides. This article will provide an overview of current legislation and illustrate how mass spectrometry instrumentation can enable fast and accurate pesticide screening.