April 2nd 2025
Using LIBS, infrared, and Raman spectroscopic techniques scientists detect quartz and hydrated silica, hinting at past Martian water activity and potential biosignatures
A Further Leap of Biomedical Raman Imaging
July 1st 2020In the past decades, we have witnessed the evolution of imaging technologies based on vibrational spectroscopy. In particular, the technical developments in Raman, coherent anti-Stokes Raman spectroscopy (CARS), and stimulated Raman scattering (SRS) microscopy allow researchers to gain new insights in biological, medical, and pharmaceutical studies.
Combining Spectroscopy with Microscopy for Advancing the Analysis of Forensically Relevant Traces
July 1st 2020Forensic traces are physical remnants of past events that provide critical information for criminal and civil investigations and adjudications. The scientific examination of traces is an incredibly valuable tool for forensic investigations, because the skilled interpretation of traces yields factual answers to a range of pertinent questions.
Applications of Confocal Raman Spectroscopy and Imaging in the Medical Device Industry
June 1st 2020Raman spectroscopy and imaging techniques are well suited for the characterization of surfaces, interfaces, and coatings to support research, development, and manufacturing of medical devices. Here, we describe applications in surface modifications and coatings, differentiation of drug polymorphs, degradation of biomaterials, and forensic identification of unknown materials.
In Situ Enhancement of Microplastic Raman Signals in Water Using Ultrasonic Capture
June 1st 2020Of the 78 million tons of plastic packaging manufactured every year, approximately one-third ends up in the ocean, the air, and most foods and beverages. To monitor the proliferation of these plastics, an ultrasonic capture method is demonstrated that produces a 1500-fold enhancement of Raman signals of microplastics in water.
Characterization of TiO2 Nanopowders by Raman Spectroscopy
June 1st 2020Raman spectroscopy is proving to be a powerful technique for characterizing the structural and morphological properties of nanopowders. Specifically, Raman spectroscopy can provide details of the grain size and thickness of titanium dioxide (TiO2) nanopowder films. These measured film properties affect the efficiency of photovoltaic devices, such as solar cells, and also the effectiveness of nanopowders in catalysis applications.
A Newcomer’s Guide to Using Surface Enhanced Raman Scattering
April 1st 2020The SERS signal arises from the combination of the number of molecules, the polarizability or cross-section of the molecule, and the electric field experienced by the molecules. Understanding how these variables interact to generate the SERS response is the key to applying SERS accurately.
Biomedical Raman Imaging 2019 in Osaka
April 1st 2020Recent technical advances in biomedical Raman imaging pave a way to its application in the biomedical fields, where morphological information of samples provides rich information. A recent technical conference in Osaka, Japan, explored these developments.
Effect of Layer Number and Crystal Stacking Orientation on the Raman Spectra of Two-Dimensional MoS2
March 1st 2020Raman imaging provides detailed crystal orientation information for two-dimensional MoS2 prepared by chemical vapor deposition on silicon substrates. These two-dimensional crystals consist of individual atomic layers of sulfur, molybdenum, and sulfur atoms.
Introduction to the Raman Spectroscopy Terminology Guide
February 1st 2020The Raman Terminology Guide you now have before you is a comprehensive set of definitions for topics of interest to molecular spectroscopists and those specifically using Raman spectroscopy in their daily work. This guide includes the types of Raman spectroscopy techniques and many terms related to the applications of Raman spectroscopy instruments. This terminology guide includes definitions for more than 250+ molecular spectroscopy terms in sufficient detail to provide readers with a reasonable understanding of the concepts covered.
Raman Analysis of Ethylene Vinyl Acetate Copolymers–Using 2D-COS for Identifying Structural Changes
November 1st 2019Raman 2D-COS spectral data provide information on conformational changes of polymers. Here, Raman spectra of ethylene vinyl acetate and vinyl acetate copolymer are measured and interpreted, enabling a description of morphological changes related to the vinyl acetate group.
Screening Affinity Agents for Use with SERS
October 3rd 2019Christy L. Haynes, of the University of Minnesota (Minneapolis and Saint Paul, Minnesota), has been working with her research team to explore the use of a rapid and facile technique to empirically screen affinity agents of diverse compositions for all manner of targets. Here, she describes the advantages of using isothermal titration calorimetry (ITC) for screening of polymer affinity agents for use with surface-enhanced Raman scattering (SERS).
Using Reference Materials, Part II: Photometric Standards
October 1st 2019Alignment of the instrument y-axis is a critical step for quantitative and qualitative measurements using spectroscopy. Here, we explain in detail how to use photometric standards for ultraviolet, visible, near infrared, infrared, and Raman spectroscopy.
Developing Spectroscopy Instruments for Use in Extreme Environments
September 13th 2019Spectroscopy can be difficult to carry out outside a controlled laboratory environment. Imagine, then, the hurdles that would accompany performing spectroscopy in the extreme conditions of deep space or the ocean floor. Mike Angel, a professor of chemistry at the University of South Carolina, has taken on those challenges, working on new types of instruments for remote and in- situ laser spectroscopy, with a focus on deep-ocean, planetary, and homeland security applications of deep ultraviolet Raman, and laser-induced breakdown spectroscopy to develop the tools necessary to work within these extreme environments.
Stress, Strain, and Raman Spectroscopy
September 1st 2019When stress is applied to an object, it can produce strain. Strain can be detected through changes in peak position and bandwidth in Raman spectra. Here, we show examples of how strain in technologically important materials appears in the Raman spectra.
Spectroscopy Magazine Announces the 2019 Emerging Leader in Molecular Spectroscopy
June 17th 2019Ishan Barman, PhD, an assistant professor at Johns Hopkins University, has won the 2019 Emerging Leader in Molecular Spectroscopy Award, which is presented by Spectroscopy magazine. This annual award recognizes the achievements and aspirations of a talented young molecular spectroscopist, selected by an independent scientific committee. The award will be presented to Barman at the SciX 2019 conference in October, where he will give a plenary lecture and be honored in an award symposium.
Advancing Biomedical Research with New Infrared and Raman Microscopy Techniques
June 10th 2019Significant progress is being made to harness the power of spectroscopy technique for medical research. An ongoing challenge, and area of development, in this effort, is to “see” more and more detail about biological activity, even within individual cells. Ji-Xin Cheng, a professor of biomedical engineering at Boston University, is advancing such work, by developing techniques like midinfrared photothermal (MIP) imaging and Raman spectromicroscopy. Cheng is the 2019 winner of the Ellis R. Lippincott Award, which is awarded annually by the Optical Society, the Coblentz Society, and the Society for Applied Spectroscopy, to an individual who has made significant contributions to the field of vibrational spectroscopy. Here, Cheng speaks to us about those techniques.
Criteria for High-Quality Raman Microscopy
June 1st 2019Five key qualitative factors–speed, sensitivity, resolution, modularity and upgradeability, and combinability–contribute to the quality of confocal Raman imaging microscopes. Using application examples, this article introduces modern Raman imaging and correlative imaging techniques, and presents state-of-the-art practice examples from polymer research, pharmaceutics, low-dimensional materials research, and life sciences.