Tunable diode laser absorption spectroscopy is hitting the mainstream. Here, we look at the history of the technique, the current state of the technology, and future challenges.
Although recent steel coating methods have demonstrated improvements in corrosion resistance, they can prove expensive and complicated. In this study, XPS analysis was used to evaluate the corrosion resistance of steel treated with an alternative technique.
As biopharmaceuticals continue to increase in sophistication, how can their discovery and development be managed to reduce uncertainties and expedite the process?
A look at the implementation of the new United States Pharmacopeia (USP) chapters and the International Conference for Harmonization (ICH) guidelines for elemental impurities from an historical perspective, providing insight into the changes and considering the challenges and opportunities that lie ahead as the industry embraces the new methodology.
There have been exciting recent advances in ICP-MS instrumentation, such as the development of magnetic sector ICP-MS, multicollector ICP-MS, time-of-flight ICP-MS, and triple-quadrupole ICP-MS, as well as developments in the coupling of laser ablation (LA) and laser-induced breakdown spectroscopy (LIBS) to ICP-MS. This article surveys these developments and looks to the future.
Matrix-assisted laser desorption–ionization (MALDI) imaging mass spectrometry allows direct, in situ, label-free measurement of proteins, peptides, lipids, small-molecule drugs and their metabolites, and other chemicals in tissues. In a range of applications, the unique information generated by MALDI imaging can make a significant contribution to understanding factors such as molecular and metabolic mechanisms and the transport and localization of compounds or metabolites with human, animal, or plant species.
Matrix-assisted laser desorption–ionization (MALDI) imaging mass spectrometry allows direct, in situ, label-free measurement of proteins, peptides, lipids, small-molecule drugs and their metabolites, and other chemicals in tissues. In a range of applications, the unique information generated by MALDI imaging can make a significant contribution to understanding factors such as molecular and metabolic mechanisms and the transport and localization of compounds or metabolites with human, animal, or plant species.
Recent advances have significantly improved the performance of capillary electrophoresis–mass spectrometry (CE–MS) for the profiling of polar and charged metabolites in volume-restricted or mass-limited biological samples. Here, those advances are discussed, and attention is also devoted to various technical aspects that still need to be addressed.
For lipid-containing food products like mayonnaise, determining nonvolatile lipid oxidation products, the precursor compounds for rancidity, makes it possible to predict product shelf life at an earlier stage in product development. A method based on normal-phase liquid chromatography with atmospheric pressure photoionization-mass spectrometry (LC–APPI-MS) was developed for this purpose.
For lipid-containing food products like mayonnaise, determining nonvolatile lipid oxidation products, the precursor compounds for rancidity, makes it possible to predict product shelf life at an earlier stage in product development. A method based on normal-phase liquid chromatography with atmospheric pressure photoionization-mass spectrometry (LC–APPI-MS) was developed for this purpose.
In the human food supply, public confidence is affected by contaminants and misreporting of nutritional information. This article highlights three events that required development of new mass spectrometry methods, including the detection of pesticides (such as fipronil and glyphosate), and the detection and quantification of fat-soluble vitamins.
In the human food supply, public confidence is affected by contaminants and misreporting of nutritional information. This article highlights three events that required development of new mass spectrometry methods, including the detection of pesticides (such as fipronil and glyphosate), and the detection and quantification of fat-soluble vitamins.
The past decade has witnessed resurgent interest in coupling GC to atmospheric-pressure chemical ionization (APCI), which is suitable for the high column flows required for using flow modulation. This study assesses the use of GP-APCI with flow modulation for sensitive detection of selected trace organics.
The past decade has witnessed resurgent interest in coupling GC to atmospheric-pressure chemical ionization (APCI), which is suitable for the high column flows required for using flow modulation. This study assesses the use of GP-APCI with flow modulation for sensitive detection of selected trace organics.
The past decade has witnessed resurgent interest in coupling GC to atmospheric-pressure chemical ionization (APCI), which is suitable for the high column flows required for using flow modulation. This study assesses the use of GP-APCI with flow modulation for sensitive detection of selected trace organics.
Researchers at Nagoya University and RIKEN have developed a novel computational method to enhance the resolution of high-speed atomic force microscopy (HS-AFM) images for studying protein conformational transitions. The algorithm, normal mode flexible fitting-atomic force microscopy (NMFF-AFM), leverages normal-mode analysis to derive precise molecular models, potentially transforming the understanding of biomolecular dynamics.
Thanks to rapid technology advancements in recent years, Raman Spectroscopy has become a routine, cost-efficient, and much appreciated analytical tool with applications in material science and in-line process control for pharmaceutical, food & beverage, chemical and agricultural industries. Improvements in laser technology, detectors (CCDs and InGaAs arrays), and spectral filters (VBG-based notch filters), along with developments of new schemes for signal generation and detection, have aided Raman instrument manufacturers in overcoming the challenge of weak signals which has accelerated instrument development and market growth. In this white paper, we discuss important performance parameters to consider when selecting the laser for Raman spectroscopy experiments.
A previous analysis of data is compared to the results achieved using classical least squares and principal component analysis. What did we learn?