The structural complexity of monoclonal antibodies (mAbs) challenges the capabilities of even the most advanced chromatography and mass spectrometry techniques. This study examines the use of micro-pillar array columns in combination with mass spectrometry for peptide mapping of both mAbs and antibody–drug conjugates (ADCs).
Multiline analysis, which consists of using several lines per element to detect positive or negative bias caused by spectral interferences, is an ideal way to use all the information emitted by the plasma and collected by a charge-coupled device detector. However, method development and validation become more complex. Dedicated software has been developed to overcome it, and analysis of geological samples will illustrate their benefit in achieving high reliability of results.
The authors discuss the use of ICP-MS as an effective chromatographic detection method that is relatively easy to interface to gas chromatography for gas analysis.
When images are measured in reflectance, the observed structure is not necessarily just that of the sample surface.
A method is illustrated for the simultaneous analysis of ethyl glucuronide and ethyl sulfate in human urine samples.
This article describes how ultratrace aluminum analysis of two nutritional intravenous solution components with limited water solubility can be performed by graphite furnace atomic absorption spectroscopy (GFAAS) with dissolution in 1-propanol.
The amaZon series is the next step in Bruker Daltonics' family of ion trap mass spectrometers.
Here, the authors demonstrate the use of a systematized approach to SPE method development and LC–MS-MS analysis.
Since it was first described in 1974, surface-enhanced Raman spectrometry (SERS) has been thought to offer significant potential for a range of different applications. The theoretical sensitivity and specificity envisaged for this powerful technique has engaged scientists for many years, but practical challenges have hindered its routine adoption. Now, a new approach combines a robust and reliable substrate with expertise in surface chemistry and molecular biology on a platform that can be adapted for a wide variety of Raman instrumentation and customized routine applications.
The authors discuss the use of electron-capture dissociation coupled with a linear ion trap time-of-flight mass spectrometer to investigate the structure of human transferrin.
The study of emulsions is important to provide information on interactions, separation, network connections and the role of emulsifiers. These are key to ensure emulsion is stable and suited to its specific role.
The analysis of amines by gas chromatograph ;mass spectrometry (GC–MS) using electron ionization (EI) has always been a challenge
The United States Army Research Laboratory (ARL) has been applying standoff laser-induced breakdown spectroscopy (LIBS) to hazardous material detection and determination. We describe several standoff systems that have been developed by ARL and provide a brief overview of standoff LIBS progress at ARL. We also present some current standoff LIBS results from explosive residues on organic substrates and biomaterials from different growth media. These new preliminary results demonstrate that standoff LIBS has the potential to discriminate hazardous materials in more complex backgrounds.
When using a triple-quadrupole ICP-MS system, the increased abundance sensitivity of MS/MS mode makes it possible to measure trace elements using isotopes that would otherwise be affected by peak tailing from an adjacent major element. This approach is illustrated using the example of ultratrace 237Np analysis in the presence of 10 ppm U.
In this article, the authors take a look at the identification, synthesis, and characterization of impurities in Ramipril tablets.
In this article, the authors take a look at the identification, synthesis, and characterization of impurities in Ramipril tablets.
In this article, the authors take a look at the identification, synthesis, and characterization of impurities in Ramipril tablets.
The authors discuss the emergence of liquid chromatography coupled with tandem mass spectrometry as a complementary method to traditional methodology used for clinical applications.
The authors discuss the challenges presented by the many new applications of mass spectrometry.
The collection of blood-derived samples from preclinical and clinical trial studies onto paper-based, Guthrie-type cards is gaining momentum within the pharmaceutical industry. This approach holds the potential to minimize animal usage, improve data quality, and reduce shipping costs. However, the small sample volumes and extra matrix effects from the cards result in method development and sensitivity challenges for bioanalysts. Here, we present a discussion on the analytical challenges that both liquid chromatography and mass spectrometry face as well as present some potential solutions to these issues.
Raman confocal spectroscopy is increasingly being applied for the analysis of embedded contaminants within materials. A non-contact, non-destructive analysis method, Raman spectroscopy requires very little sample preparation, has greater spatial resolution compared to FT-IR microscopy and the confocal analysis method allows visualization of materials within a clear sample matrix. This paper will investigate the analysis of an embedded contaminant within a polymer matrix on a glass substrate.
In plant metabolomics, molecular fingerprints and additional molecular descriptors can be identified using recent developments in polarity-extended separations with serial coupling of reversed-phase LC and HILIC combined with ESI-TOF-MS.
The United States Army Research Laboratory (ARL) has been applying standoff laser-induced breakdown spectroscopy (LIBS) to hazardous material detection and determination. We describe several standoff systems that have been developed by ARL and provide a brief overview of standoff LIBS progress at ARL. We also present some current standoff LIBS results from explosive residues on organic substrates and biomaterials from different growth media. These new preliminary results demonstrate that standoff LIBS has the potential to discriminate hazardous materials in more complex backgrounds.
Microplastics from clothing, abrasive action on plastics, or engineered microbeads as found in some exfoliating cosmetics are showing up in many environmental systems. FT-IR microscopy is a useful tool in the analysis of microplastics, providing visual information, particle counts, and particle identification.
The authors introduce a compact ECD device coupled to a linear ion trap time-of-flight instrument, and use it to analyze protein phosphorylation in both offline and online modes.
Manufacturing advanced electronic devices requires the production of high-quality semiconductors and integrated circuit chips. In this article, the authors explain how GC, when coupled with ICP-MS, enables the detection of elements that are essential in semiconductor production.
Infrared microspectroscopy has led to important advances in a wide range of fields, as biologists, chemists, geologists, materials scientists, microscopists, and spectroscopists around the world have awakened to the values of nanotechnology. The small world is getting larger.
The usefulness of liquid chromatography–mass spectrometry–mass spectrometry (LC–MS-MS) methods for the unambiguous identification and quantification of pesticides in complex matrix samples is well known. Triple-quadrupole systems have proven to be useful for this task because of their high specificity in MS-MS mode and their low detection limits. However, working in MS-MS mode makes any MS system blind to other compounds of interest.