Authors


Arthur Komlosh

Latest:

Testing the Limits of Ion Mobility Mass Spectrometry to Compare a Nonbiological Complex Drug Product and Purported Generics—A Case Study with Copaxone

Ion mobility mass spectrometry (IMMS) is a two-dimensional technique that allows separation of ionized molecules based on molecular size, shape, and mass‑to‑charge ratio (m/z). It has rapidly become a valuable application for analyzing isomeric compounds in a complex matrix (e.g., proteomic and lipidomic samples) or complex mixtures of structurally related and isobaric analytes (e.g., oil samples or polymer blends). IMMS was investigated as a possible technique to compare purported generic products with Copaxone®, a drug for treating relapsing‑remitting multiple sclerosis, which contains a very complex mixture of synthetic peptides. The analysis was performed on 15 randomly chosen batches of Copaxone® and 5 batches of purported generics that are marketed drugs in their country of origin. All samples were compared to a reference batch of Copaxone® (P53961) using Waters HDMS Compare software. The analysis produced heat maps that highlighted significant intensity differences in peptides at various m/z and drift times. A quantitative assessment of these heat maps was also performed by summing all the pixel values to produce a total pixel value (TPV). While the average TPV for the Copaxone® batches was 510811, the TPVs of the purported generics were 8-13 fold higher (2301682 to 4276572).


Richard Denny

Latest:

Testing the Limits of Ion Mobility Mass Spectrometry to Compare a Nonbiological Complex Drug Product and Purported Generics—A Case Study with Copaxone

Ion mobility mass spectrometry (IMMS) is a two-dimensional technique that allows separation of ionized molecules based on molecular size, shape, and mass‑to‑charge ratio (m/z). It has rapidly become a valuable application for analyzing isomeric compounds in a complex matrix (e.g., proteomic and lipidomic samples) or complex mixtures of structurally related and isobaric analytes (e.g., oil samples or polymer blends). IMMS was investigated as a possible technique to compare purported generic products with Copaxone®, a drug for treating relapsing‑remitting multiple sclerosis, which contains a very complex mixture of synthetic peptides. The analysis was performed on 15 randomly chosen batches of Copaxone® and 5 batches of purported generics that are marketed drugs in their country of origin. All samples were compared to a reference batch of Copaxone® (P53961) using Waters HDMS Compare software. The analysis produced heat maps that highlighted significant intensity differences in peptides at various m/z and drift times. A quantitative assessment of these heat maps was also performed by summing all the pixel values to produce a total pixel value (TPV). While the average TPV for the Copaxone® batches was 510811, the TPVs of the purported generics were 8-13 fold higher (2301682 to 4276572).


Tal Hasson

Latest:

Testing the Limits of Ion Mobility Mass Spectrometry to Compare a Nonbiological Complex Drug Product and Purported Generics—A Case Study with Copaxone

Ion mobility mass spectrometry (IMMS) is a two-dimensional technique that allows separation of ionized molecules based on molecular size, shape, and mass‑to‑charge ratio (m/z). It has rapidly become a valuable application for analyzing isomeric compounds in a complex matrix (e.g., proteomic and lipidomic samples) or complex mixtures of structurally related and isobaric analytes (e.g., oil samples or polymer blends). IMMS was investigated as a possible technique to compare purported generic products with Copaxone®, a drug for treating relapsing‑remitting multiple sclerosis, which contains a very complex mixture of synthetic peptides. The analysis was performed on 15 randomly chosen batches of Copaxone® and 5 batches of purported generics that are marketed drugs in their country of origin. All samples were compared to a reference batch of Copaxone® (P53961) using Waters HDMS Compare software. The analysis produced heat maps that highlighted significant intensity differences in peptides at various m/z and drift times. A quantitative assessment of these heat maps was also performed by summing all the pixel values to produce a total pixel value (TPV). While the average TPV for the Copaxone® batches was 510811, the TPVs of the purported generics were 8-13 fold higher (2301682 to 4276572).


Roger C. Wiens

Latest:

The SuperCam Remote Sensing Instrument Suite for the Mars 2020 Rover: A Preview

The SuperCam remote sensing instrument suite under development for NASA’s Mars 2020 rover performs laser-induced breakdown spectroscopy (LIBS), remote Raman spectroscopy, visible and infrared (VISIR) reflectance spectroscopy, acoustic sensing, and high resolution color imaging. The instrument builds on the successful architecture of the ChemCam instrument which provides LIBS and panchromatic images on the Curiosity rover, adding the remote Raman spectroscopy by frequency doubling the laser and using a gated intensified detector to obtain Raman signals at distances to 12 m. To the visible reflectance spectroscopy used by ChemCam, an AOTF-based infrared spectrometer is added to cover the 1.3-2.6 µm range that contains important mineral signatures. A CMOS detector provides color (Bayer filter) images at a pixel resolution of 19 µrad and an optical resolution of 30 µrad. Sounds are recorded via a Knowles Electret microphone, which is the same one that was unsuccessfully attempted on two earlier missions. The acoustic signals of the LIBS plasmas will provide information on the hardness of the targets, while other sounds (wind, rover sounds) will also be recorded. The laser, telescope, IR spectrometer, and camera reside on the rover’s mast and are provided by CNES, while the LIBS, Raman, and VIS spectrometers and data processing unit are built by LANL and reside in the rover body. A calibration target assembly provided by U. Valladolid, Spain, resides on the back of the rover. The overall mass of the instrument suite is 10.7 kg.


Sylvestre Maurice

Latest:

The SuperCam Remote Sensing Instrument Suite for the Mars 2020 Rover: A Preview

The SuperCam remote sensing instrument suite under development for NASA’s Mars 2020 rover performs laser-induced breakdown spectroscopy (LIBS), remote Raman spectroscopy, visible and infrared (VISIR) reflectance spectroscopy, acoustic sensing, and high resolution color imaging. The instrument builds on the successful architecture of the ChemCam instrument which provides LIBS and panchromatic images on the Curiosity rover, adding the remote Raman spectroscopy by frequency doubling the laser and using a gated intensified detector to obtain Raman signals at distances to 12 m. To the visible reflectance spectroscopy used by ChemCam, an AOTF-based infrared spectrometer is added to cover the 1.3-2.6 µm range that contains important mineral signatures. A CMOS detector provides color (Bayer filter) images at a pixel resolution of 19 µrad and an optical resolution of 30 µrad. Sounds are recorded via a Knowles Electret microphone, which is the same one that was unsuccessfully attempted on two earlier missions. The acoustic signals of the LIBS plasmas will provide information on the hardness of the targets, while other sounds (wind, rover sounds) will also be recorded. The laser, telescope, IR spectrometer, and camera reside on the rover’s mast and are provided by CNES, while the LIBS, Raman, and VIS spectrometers and data processing unit are built by LANL and reside in the rover body. A calibration target assembly provided by U. Valladolid, Spain, resides on the back of the rover. The overall mass of the instrument suite is 10.7 kg.


Fernando Rull Perez

Latest:

The SuperCam Remote Sensing Instrument Suite for the Mars 2020 Rover: A Preview

The SuperCam remote sensing instrument suite under development for NASA’s Mars 2020 rover performs laser-induced breakdown spectroscopy (LIBS), remote Raman spectroscopy, visible and infrared (VISIR) reflectance spectroscopy, acoustic sensing, and high resolution color imaging. The instrument builds on the successful architecture of the ChemCam instrument which provides LIBS and panchromatic images on the Curiosity rover, adding the remote Raman spectroscopy by frequency doubling the laser and using a gated intensified detector to obtain Raman signals at distances to 12 m. To the visible reflectance spectroscopy used by ChemCam, an AOTF-based infrared spectrometer is added to cover the 1.3-2.6 µm range that contains important mineral signatures. A CMOS detector provides color (Bayer filter) images at a pixel resolution of 19 µrad and an optical resolution of 30 µrad. Sounds are recorded via a Knowles Electret microphone, which is the same one that was unsuccessfully attempted on two earlier missions. The acoustic signals of the LIBS plasmas will provide information on the hardness of the targets, while other sounds (wind, rover sounds) will also be recorded. The laser, telescope, IR spectrometer, and camera reside on the rover’s mast and are provided by CNES, while the LIBS, Raman, and VIS spectrometers and data processing unit are built by LANL and reside in the rover body. A calibration target assembly provided by U. Valladolid, Spain, resides on the back of the rover. The overall mass of the instrument suite is 10.7 kg.


Martin Tanner

Latest:

Laser Ablation and Inductively Coupled Plasma–Time-of-Flight Mass Spectrometry—A Powerful Combination for High-Speed Multielemental Imaging on the Micrometer Scale

Over the last few decades, elemental imaging using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has emerged as an important tool in the study of solid samples from a variety of scientific disciplines, including medicine, biology, and geology. This article highlights recent analytical trends towards high-speed, high-spatial resolution, multi-elemental imaging that became possible with advances in both LA and ICP-MS technology, including the design of fast-washout ablation cells and commercialization of high-speed ICP-MS such as time-of-flight mass analyzers (TOFMS), This study will demonstrate the new imaging approach by coupling LA with an-ICP-TOFMS system (icpTOF from TOFWERK, Thun, Switzerland) on two application areas: quantitative mapping of trace elements in a sulfide mineral (sphalerite), and imaging of the distribution of a chemotherapy drug (Cisplatin) in a rat kidney. High-performance LA-ICP-TOFMS provides researchers with an effective new tool to study biological and geological processes, with much greater speed and in much greater detail than previously possible with conventional ICP-MS instrumental designs.


Yannick Bussweiler

Latest:

Laser Ablation and Inductively Coupled Plasma–Time-of-Flight Mass Spectrometry—A Powerful Combination for High-Speed Multielemental Imaging on the Micrometer Scale

Over the last few decades, elemental imaging using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has emerged as an important tool in the study of solid samples from a variety of scientific disciplines, including medicine, biology, and geology. This article highlights recent analytical trends towards high-speed, high-spatial resolution, multi-elemental imaging that became possible with advances in both LA and ICP-MS technology, including the design of fast-washout ablation cells and commercialization of high-speed ICP-MS such as time-of-flight mass analyzers (TOFMS), This study will demonstrate the new imaging approach by coupling LA with an-ICP-TOFMS system (icpTOF from TOFWERK, Thun, Switzerland) on two application areas: quantitative mapping of trace elements in a sulfide mineral (sphalerite), and imaging of the distribution of a chemotherapy drug (Cisplatin) in a rat kidney. High-performance LA-ICP-TOFMS provides researchers with an effective new tool to study biological and geological processes, with much greater speed and in much greater detail than previously possible with conventional ICP-MS instrumental designs.


Olga Borovinskaya

Latest:

Laser Ablation and Inductively Coupled Plasma–Time-of-Flight Mass Spectrometry—A Powerful Combination for High-Speed Multielemental Imaging on the Micrometer Scale

Over the last few decades, elemental imaging using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has emerged as an important tool in the study of solid samples from a variety of scientific disciplines, including medicine, biology, and geology. This article highlights recent analytical trends towards high-speed, high-spatial resolution, multi-elemental imaging that became possible with advances in both LA and ICP-MS technology, including the design of fast-washout ablation cells and commercialization of high-speed ICP-MS such as time-of-flight mass analyzers (TOFMS), This study will demonstrate the new imaging approach by coupling LA with an-ICP-TOFMS system (icpTOF from TOFWERK, Thun, Switzerland) on two application areas: quantitative mapping of trace elements in a sulfide mineral (sphalerite), and imaging of the distribution of a chemotherapy drug (Cisplatin) in a rat kidney. High-performance LA-ICP-TOFMS provides researchers with an effective new tool to study biological and geological processes, with much greater speed and in much greater detail than previously possible with conventional ICP-MS instrumental designs.


Wasatch Photonics

Latest:

Introducing the WP X Series for Raman Spectroscopy

Dr. David Creasey (CEO, Wasatch Photonics) introduces their X series spectrometers for Raman spectroscopy, highlighting best use and applications.


Florian M. Zehentbauer

Latest:

A Priori Performance Estimation of Spatial Filtering in Raman Backscattering Experiments

A straightforward numerical approach to estimate the performance of a spatial filter in Raman backscattering spectroscopy has been developed. This approach enabled the authors to determine an optimal hole diameter that balances spatial resolution and signal intensity.


Julia Rüger

Latest:

A Priori Performance Estimation of Spatial Filtering in Raman Backscattering Experiments

A straightforward numerical approach to estimate the performance of a spatial filter in Raman backscattering spectroscopy has been developed. This approach enabled the authors to determine an optimal hole diameter that balances spatial resolution and signal intensity.



A. Roth

Latest:

Liquid Chromatography–Time-of-Flight Mass Spectrometry for Cannabinoid Profiling and Quantitation in Hemp Oil Extracts

The method presented here allows for the accurate, precise, and robust speciation, profiling, and quantification of cannabinoids in hemp oil extracts and commercial cannabinoid products for research and development laboratories.


Kieran Neeson

Latest:

Testing the Limits of Ion Mobility Mass Spectrometry to Compare a Nonbiological Complex Drug Product and Purported Generics—A Case Study with Copaxone

Ion mobility mass spectrometry (IMMS) is a two-dimensional technique that allows separation of ionized molecules based on molecular size, shape, and mass‑to‑charge ratio (m/z). It has rapidly become a valuable application for analyzing isomeric compounds in a complex matrix (e.g., proteomic and lipidomic samples) or complex mixtures of structurally related and isobaric analytes (e.g., oil samples or polymer blends). IMMS was investigated as a possible technique to compare purported generic products with Copaxone®, a drug for treating relapsing‑remitting multiple sclerosis, which contains a very complex mixture of synthetic peptides. The analysis was performed on 15 randomly chosen batches of Copaxone® and 5 batches of purported generics that are marketed drugs in their country of origin. All samples were compared to a reference batch of Copaxone® (P53961) using Waters HDMS Compare software. The analysis produced heat maps that highlighted significant intensity differences in peptides at various m/z and drift times. A quantitative assessment of these heat maps was also performed by summing all the pixel values to produce a total pixel value (TPV). While the average TPV for the Copaxone® batches was 510811, the TPVs of the purported generics were 8-13 fold higher (2301682 to 4276572).



PIKE Technologies

Latest:

Specular Reflection Spectroscopy with Microviewing

Printed ink on a coated aluminum sample was analyzed using a specular reflection accessory with the unique capability of simultaneous sample viewing.


LECO Corporation

Latest:

Investigating Coatings Using Glow Discharge Spectrometry (Mar 2023)

This application note shows how LECO’s GDS instruments are ideal for investigating PVD coatings and the factors that determine their protection of substrate.



Simon Cubbon

Latest:

High-Throughput Structure-Based Profiling and Annotation of Flavonoids

A novel mass spectrometry-based flavonoid profiling workflow is applied to characterize and structurally annotate a large number of unknown flavonoids in fruit juice and vegetable juice samples.


Michael J. Y. Jarvis

Latest:

High-Throughput Quantitative Analysis of Vitamin D Using a Multiple Parallel LC–MS System Combined with Integrated On-Line SPE

A newly developed high-throughput method for the quantitation of vitamin D using both multiplexed LC and on-line SPE is discussed.


Anne-Marie Dowgiallo

Latest:

Identifying Textiles with Extended-Range Near Infrared Spectroscopy

A compact, MEMS-based, single-photodetector NIR device, the NanoQuest, is used to distinguish different types of textiles.


Alejandra Branham

Latest:

Trace-Level Detection of Explosives Using Sputtered SERS Substrates

This study explores the use of a novel SERS substrate that can enhance the Raman signals of explosives that are present in picogram quantities in neat solutions using a visible laser wavelength and a compact Raman instrument.


Jan Philip Plog

Latest:

Monitoring Polymer Phase Transitions by Combining Rheology and Raman Spectroscopy

The in situ combination of rheometry and Raman spectroscopy allows for real-time, synchronized measurement of both physical and chemical material properties.


Nathan C. Crawford

Latest:

Gaining Insight into Cocoa Butter Polymorph Formation Through In Situ Rheology and Raman Spectroscopy

The hyphenation of rheology and Raman spectroscopy enabled a more holistic depiction of the crystallization process and provided unique insights into the formation of cocoa butter polymorph form IV.


S. Duraipandian

Latest:

Establishing a Calibration Procedure for the Energy-Shift Axis in Diverse Raman Spectrometers

A procedure was developed to calibrate the wavenumber (energy shift) axis in Raman spectrometers, and it was tested in both portable and laboratory-based instruments.


L. Nielsen

Latest:

Establishing a Calibration Procedure for the Energy-Shift Axis in Diverse Raman Spectrometers

A procedure was developed to calibrate the wavenumber (energy shift) axis in Raman spectrometers, and it was tested in both portable and laboratory-based instruments.


R. Møller-Nilsen

Latest:

Establishing a Calibration Procedure for the Energy-Shift Axis in Diverse Raman Spectrometers

A procedure was developed to calibrate the wavenumber (energy shift) axis in Raman spectrometers, and it was tested in both portable and laboratory-based instruments.


M.R. Pollard

Latest:

Establishing a Calibration Procedure for the Energy-Shift Axis in Diverse Raman Spectrometers

A procedure was developed to calibrate the wavenumber (energy shift) axis in Raman spectrometers, and it was tested in both portable and laboratory-based instruments.


Kristen Frano

Latest:

See-Through Measurements of Illicit Substances in Commercial Containers with the TacticID®-1064 ST

The TacticID-1064 ST has dedicated software and hardware designed to measure materials through both transparent and opaque containers. These through-barrier measurements remove the need for active sampling of potentially dangerous compounds such as fentanyl, leading to safer operations and reduced wait time for clear results. The 1064 nm laser is also an advantage for analyzing fluorescent or impure material. A Raman system with a 785 or 830 nm laser may generate fluorescence from these samples, which can overwhelm the Raman signal and make identification impossible. In this application note, we explore some of the capabilities of the TacticID-1064 ST.