An increasing number of antibiotic residue problems in food have emerged around the world. We examine how SERS is used to identify antibiotic residues in chicken, focusing on doxycycline hydrochloride and tylosin.
Tunable diode laser absorption spectroscopy (TDLAS) is combined with an extreme learning machine (ELM) model, tailored by genetic algorithm (GA) parameter searching, to produce a more robust analytical method for trace gas analysis of ethylene.
A review of exponential signal models with machine learning in nuclear magnetic resonance (NMR) spectroscopy is discussed here.
A recent study used aluminum foil-assisted ATR-FT-IR spectroscopy to detect acute kidney injury (AKI) in a rat model using plasma samples. The results show how ATR-FT-IR could be used to study more types of clinical samples in the future.
EPA Method 200.8 and the Lead and Copper Rule Revisions don’t allow use of modern ICP-MS technology with a collision cell. Instead, correction equations can be used to compensate for polyatomic interferences.
Gas chromatography–mass spectrometry (GC–MS) with cold electron ionization (EI) is based on interfacing the GC and MS instruments with supersonic molecular beams (SMB) along with electron ionization of vibrationally cold sample compounds in SMB in a fly-through ion source (hence the name cold EI). GC–MS with cold EI improves all the central performance aspects of GC–MS. These aspects include enhanced molecular ions, improved sample identification, an extended range of compounds amenable for analysis, uniform response to all analytes, faster analysis, greater selectivity, and lower detection limits. In GC–MS with cold EI, the GC elution temperatures can be significantly lowered by reducing the column length and increasing the carrier gas flow rate. Furthermore, the injector temperature can be reduced using a high column flow rate, and sample degradation at the cold EI fly-through ion source is eliminated. Thus, a greater range of thermally labile and low volatility compounds can be analyzed. The extension of the range of compounds and applications amenable for analysis is the most important benefit of cold EI that bridges the gap with LC–MS. Several examples of GC–MS with cold EI applications are discussed including cannabinoids analysis, synthetic organic compounds analysis, and lipids in blood analysis for medical diagnostics.
To study the effect of various extractants on the structure of peat humic acid, peat humic acid was extracted using NH3·H2O, Na2CO3, NaHCO3, and Na2SO3 via alkali-extraction and acid-precipitation methods.
Several types of Raman spectroscopy, including Fourier transform (FT)–Raman and dispersive Raman, are well suited to examine and understand the fat compositional heterogeneity in solid foods, identify polymorph or crystallinity, and measure fatty acid saturation.
UV-Vis-NIR can be used to understand how ancient buildings were constructed. Here, a UV-Vis-NIR and EDXRF spectrophotometer were used to analyze glazed tiles that comprised a historical site built in Ancient China.
This study provides theoretical and technical support for implementing online detection of cement raw meal components using near-infrared (NIR) spectroscopy.
Raman spectroscopy and imaging techniques are well suited for the characterization of surfaces, interfaces, and coatings to support research, development, and manufacturing of medical devices. Here, we describe applications in surface modifications and coatings, differentiation of drug polymorphs, degradation of biomaterials, and forensic identification of unknown materials.
A novel intelligent inversion model integrating multiscale fractal analysis, PCA, and machine learning techniques (RF and SVM) was devised to accurately estimate soil organic matter (SOM) using hyperspectral data.
Selecting the correct basis set is essential for enhancing accuracy of DFT simulations. Here, the effects of five basis sets on the theoretical frequencies and calculated infrared intensities are compared to predict the molecular structural and vibrational properties of the triclosan. The demonstrated methods can help provide a benchmark for studying the pollution mechanisms and ecological effects of antibacterial products like triclosan.
Depletion of modern mineral resources due to continuous exploitation and utilization makes it economically necessary to quickly identify the locate sources of low-grade ore. Here, we propose a vis-NIR remote sensing method to determine copper content in mining areas as well as to measure the environmental impact of surface mining methods.
In celebration of Spectroscopy’s 35th Anniversary, leading experts discuss important issues and challenges in analytical spectroscopy.
Laboratories use proficiency tests (PTs) to comply with their accreditation requirements and evaluate analysts’ performance. Laboratories regard PTs as a burdensome chore that must be successfully completed to satisfy internal or external compliance or accreditation requirements. PTs are an integral part of a quality management system (QMS) under quality assurance and control (QA/AC). Understanding the core components of the QMS is an important part of passing any PT test. Unacceptable PT results may have little to do with the result itself but reflect the use and application of statistics, standards, and methods.
In this study, the nitrophenol isomers, in solid and liquid phases, were analyzed using Raman spectroscopy, laying the groundwork for determining nitrophenol isomers in environmental monitoring with this technique.
We examine the feasibility of FT-NIR for the detection of early fungal infections in citrus.
The United States Pharmacopeia–National Formulary (USP–NF) has contributed to ensuring the quality of dietary supplements, foods, and medicines for more than 200 years. This overview explains the use of vibrational spectroscopy techniques in meeting USP–NF requirements and how the information is organized.
We show how FT-IR may be used for quality control analysis of natrii sulfas, a transparent crystalline material used in natural medicine that primarily contains sodium sulfate decahydrate, crystallized from sulfate minerals.
In this study, the nitrophenol isomers, in solid and liquid phases, were analyzed using Raman spectroscopy, laying the groundwork for determining nitrophenol isomers in environmental monitoring with this technique.
Shifted-excitation Raman difference spectroscopy (SERDS) is a technique that is capable of reducing the interference caused by fluorescence and improve the potential of Raman for distinguishing drug compounds in seized samples with fluorescent additives. Here, 43 drugs were analyzed to show the practical application of SERDS.
In this paper, a system based on laser induced breakdown spectroscopy (LIBS) and back propagation (BP) method was developed for the composition and traceability analysis of crop burning smoke.
*** Live: Tuesday, Oct. 27, 2020 at 11am EDT| 8am PDT| 3pm GMT| 4pm CET*** How would you connect the ocean, a crime scene and prehistoric sites? You could do it by using micro-Raman (also called Raman microscopy) spectroscopy! Join us for this web seminar to learn about the versatility and different modalities of micro-Raman Spectroscopy. Then, discover how the micro-Raman can be used in a wide range of applications to solve analytical challenges. ***On demand available after final airing until Oct. 27, 2021***