Authors


Maurangelo Petruzzella

Latest:

Spectral Sensing Using a Handheld NIR Module Based on a Fully Integrated Sensor Chip

A novel approach to NIR spectral sensing, using a miniaturized fully-integrated multipixel array of resonant-cavity-enhanced InGaAs photodetectors, enables sensors with a millimeter-scale footprint and wafer-scale fabrication. This multipixel sensor does not measure the full spectrum, but rather a limited number of spectral regions with limited resolution (50–100 nm).



Lujuan Yang

Latest:

Detection of Acute Kidney Injury Induced by Gentamicin in a Rat Model by Aluminum-Foil-Assisted ATR-FT-IR Spectroscopy

A recent study used aluminum foil-assisted ATR-FT-IR spectroscopy to detect acute kidney injury (AKI) in a rat model using plasma samples. The results show how ATR-FT-IR could be used to study more types of clinical samples in the future.


Juan Dong

Latest:

Prediction of the Harvest Time of Cabernet Sauvignon Grapes Using Near-Infrared Spectroscopy

The results in this study indicate that NIR spectroscopy is a potentially promising approach for the rapid identification of different harvest times of Cabernet Sauvignon grapes, and the proposed technique is helpful for the prediction of ripened and over-ripened Cabernet Sauvignon grapes during the harvest time.


Haichuan Lu

Latest:

Simultaneous Determination of 50 Elements in Geological Samples by ICP-MS Combined with ICP-OES

A method combining inductively coupled plasma–mass spectrometry (ICP-MS) with inductively coupled plasma–optical emission spectrometry (ICP-OES) was developed for multielement determination of 50 species of major, minor, micro, and trace, rare earth, and rare elements in geological samples.


Andrea Fiore

Latest:

Spectral Sensing Using a Handheld NIR Module Based on a Fully Integrated Sensor Chip

A novel approach to NIR spectral sensing, using a miniaturized fully-integrated multipixel array of resonant-cavity-enhanced InGaAs photodetectors, enables sensors with a millimeter-scale footprint and wafer-scale fabrication. This multipixel sensor does not measure the full spectrum, but rather a limited number of spectral regions with limited resolution (50–100 nm).


Mary Lewis

Latest:

Raman Spectroscopy in Analyzing Fats and Oils in Foods

Several types of Raman spectroscopy, including Fourier transform (FT)–Raman and dispersive Raman, are well suited to examine and understand the fat compositional heterogeneity in solid foods, identify polymorph or crystallinity, and measure fatty acid saturation.


Yang Li

Latest:

Rapid Quality Discrimination of Grape Seed Oil Using an Extreme Machine Learning Approach with Near-Infrared (NIR) Spectroscopy

Given that grape seed oil has shown beneficial effects for consumers, there is a interest in measuring oil quality and potential adulteration. This study demonstrates an effective near-infrared (NIR) spectroscopy method, using a series of machine learning approaches for wavelength variable selection, to rapidly discriminate grape seed oil adulteration.


Juanjuan Lu

Latest:

An X-ray Fluorescence (XRF) Analysis of a Molecular Layer Deposition (MLD) Method Used in Producing Cement from Phosphogypsum

Phosphogypsum can be used as an intermediary material to produce cement clinker. To monitor the quality of phosphogypsum cement, a novel molecular layer deposition X-ray fluorescence (XRF) analysis method using a glass frit was developed.


Matthew W. Perkins

Latest:

Imaging of Trace Elements Using Laser Ablation–Inductively Coupled Plasma–Mass Spectrometry: Emerging New Applications

Metallomics seeks to understand the metallobiochemistry of cells and organisms in health and disease. This article explains the principle of laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) for imaging applications and highlights its potential to provide additional insights in bioanalysis and metallomics.


Kai Song

Latest:

Study of Nondestructive Testing of Nanguo Pear Quality Using Vis-NIR Spectroscopy

We propose a theoretical basis using vis-NIR spectroscopy for the development of an online nondestructive testing system for the quality of Nanguo pear fruit.


Sinan Aljalali

Latest:

Effect of Tissue Optical Properties on the Fluorescence of BODIPY Derivative as a Photosensitizer for Photodynamic Therapy

Photodynamic therapy is widely used as an established biomedical optical modality for the conservative treatment of tumors. This work investigates laser-induced fluorescence spectroscopy of the emerging photodynamic photosensitizer BODIPY-520 in turbid media.


Oleg Ryabchykov

Latest:

Real-Time Chemometric Analysis of Multicomponent Bioprocesses Using Raman Spectroscopy

In this study, a glycerol-fed, lab-scale E. coli bioprocess producing representative pharmaceutical compounds was monitored offline with a portable, high-sensitivity Raman spectrometer.


Zhongzheng Zhou

Latest:

Automatic Coal-Rock Recognition by Laser-Induced Breakdown Spectroscopy Combined with an Artificial Neural Network

An artificial neural network was combined with LIBS to provide a rapid and accurate coal-rock recognition method for unmanned coal mining.


Zhenhui Du

Latest:

Specific Recognition Technology of Infrared Absorption Spectra Based on Continuous Wavelet Decomposition

IR absorption spectroscopy technology can solve the problem of line aliasing in gas detection. Here, continuous wavelet transform was used in time-frequency analysis to improve spectral component identification and quantitative detection of gases.


Karolina Kielisczyzk

Latest:

Characterization of Street Drugs Using Handheld Fourier Transform Raman Spectroscopy

Handheld FT-Raman spectroscopy can complement GC–MS and IR in characterizing street drugs.



Bing Zhang

Latest:

Porous Chitosan Composite Membrane Tandem Laser-Induced Breakdown Spectroscopy for Detection of Metal Elements in Liquid Samples

Detecting metal elements in liquid samples cannot be done efficiently by only using LIBS, but when the technique is combined with appropriate membrane materials, rapid analysis of solution samples can be realized.


Friedhelm Rickert

Latest:

Comparison of Peristaltic Pumps Used for Sample Introduction in Inductively Coupled Plasma–Atomic Emission Spectroscopy (ICP-AES)

Inductively coupled plasma–atomic emission spectroscopy (ICP-AES) relies on the use of a peristaltic pump for sample introduction. Here, two conventional peristaltic pumps are compared with a new pump based on the “easy click” principle for the analytical figures of merit.


Jiamei Pu

Latest:

Exploring the Potential of the Yb(III) (HE)4 Complex for Oncotherapy Using UV-vis Spectroscopy

Evaluation of the UV-vis spectra of the reaction product of ytterbium (III) with hematoxylin (HE) indicates the formation of a rare earth complex that further reacts with marine mammal DNA, indicating the potential that this complex may have anti-tumor properties.


Stefan Seeger

Latest:

Reliable Chemical Analysis of Aerosols by Reference-Free X-ray Spectrometry for Monitoring Airborne Particulate Matter

This approach provides traceable and reliable quantitative elemental analysis of airborne particles for on-site environmental measurement with portable instrumentation.


W. Joshua Kennedy

Latest:

Small-Angle X-ray Scattering from Lamellar Structures

Lamellar structures, which are common in many polymeric materials and biological tissues, can diffract X-rays and give rise to reflections at small scattering angles. Analysis of these scattering features can be used investigate the deformation of lamellar structures at the microstructural length.


Hongyan Chen

Latest:

Online ATR-FT-IR for Real-Time Monitoring of the Aspirin Esterification Process in an Acid-Mediated Reaction

In this study, the measured spectra of acetic anhydride, acetic acid, salicylic acid, and aspirin are used for in situ monitoring of the progression of aspirin synthesis in a reaction system. Traditional methods such as HPLC and titration ultraviolet (UV) absorption are not optimal for such real-time monitoring because of long analytical times and complicated procedures. ATR-FT-IR offers an alternative solution that overcomes the shortcomings of traditional techniques.


Xiao Fu

Latest:

Stable Variable Selection Method and Comparison for Quantitative Analysis of Steels Using Laser-Induced Breakdown Spectroscopy

In this work, a stable variable selection method based on variable stability correction (VSC) and modified iterative predictor weighting-partial least squares (mIPW-PLS) is proposed for the quantitative analysis of steel samples by laser-induced breakdown spectroscopy (LIBS).


Honglei Zhou

Latest:

Cold-Hot Nature Identification of Chinese Medicine Based on an Ultraviolet Chemical Fingerprint

A model has been developed to predict the “cold” or “hot” nature of Chinese medicines based on UV spectral data.


Lauren Stainback

Latest:

A Look at Inorganic Analyses, Proficiency Tests, and Best Practices, Part II

Understanding the proper ways to plan, run, and report proficiency tests will help you avoid errors and contamination.


Yunjuan Yan

Latest:

Detection of Early Bruises in Honey Peaches Using Shortwave Infrared Hyperspectral Imaging

By extracting the RGB, HSI, and grayscale information from a spectral range of 400–1100 nm and comparing the spectral features of sound and bruised peaches, the authors provided a classification system and theoretical basis for online fruit bruise detection.


M. Mar Darder

Latest:

Fiberoptic Formaldehyde Field Sensors for Industrial Environments: Capitalizing on Evanescent-Wave Spectroscopy

An inexpensive fiberoptic-based formaldehyde field sensor is described for monitoring low-levels of formaldehyde, a widespread indoor air pollutant, based on the principle of evanescent wave absorption of light. Sensor prototypes following that principle are being tested in two plywood board production plants.


Xiaohan Li

Latest:

Prediction of the Harvest Time of Cabernet Sauvignon Grapes Using Near-Infrared Spectroscopy

The results in this study indicate that NIR spectroscopy is a potentially promising approach for the rapid identification of different harvest times of Cabernet Sauvignon grapes, and the proposed technique is helpful for the prediction of ripened and over-ripened Cabernet Sauvignon grapes during the harvest time.


Philipp Hönicke

Latest:

Reliable Chemical Analysis of Aerosols by Reference-Free X-ray Spectrometry for Monitoring Airborne Particulate Matter

This approach provides traceable and reliable quantitative elemental analysis of airborne particles for on-site environmental measurement with portable instrumentation.