A new high-throughput LC–MS/MS method meets the challenge of eliminating matrix effects for monitoring, with high specificity, polar organic pesticides such as glyphosate in food and water, while meeting targeted limits of detection.
Surface-enhanced Raman spectroscopy (SERS) has been studied extensively over the last few decades with many advances in preparation of SERS substrates and coatings. While the bulk of the research in SERS substrate preparation has been devoted to pushing detection limits to higher sensitivity for measurement of single samples, the application of SERS to high-throughput analysis has been largely ignored. In this article, we present the use of commercially available SERS-coated microtiter plates in a dedicated Raman microtiter plate reader, enabling high-throughput trace analysis measurements. This article also describes the SERS substrate, the high-throughput plate reader, and preliminary results from samples representing trace analysis of explosives, nerve agents, pharmaceuticals, and biological compounds.
What does the accelerating adoption of PAT-based approaches to pharmaceutical manufacturing mean for the makers and users of spectroscopic systems?
Gas chromatography combined with atmospheric-pressure chemical ionization (APCI) was used to analyze high-molecular-weight phthalates.
The authors show how a multivariate curve resolution algorithm, called SIMPLe-to-use Interactive Self-modeling Mixture Analysis (SIMPLISMA), can facilitate the quantitative and qualitative analysis of difficult samples, and apply the algorithm to a technically challenging Raman spectra series for carbamazepine polymorphs.
The development of novel, nondestructive technologies for rapid analysis of evidence discovered at crime scenes is pertinent to our criminal justice system to solve the millions of violent crimes that occur each year. Without a witness, establishing the precise timeline of a crime is difficult. Therefore, technologies based on sensitive, nondestructive techniques are needed to evaluate evidence and create such a timeline. We propose the use of Raman spectroscopy to analyze the age of bloodstains for potential use as a forensics tool. Previous studies have revealed Raman spectroscopy is sensitive to changes in blood analyte concentration and different oxidative states of hemoglobin. Raman spectroscopy could allow for rapid comparison of spectra from blood stains of unknown age to spectra of known age with high temporal accuracy. Though further investigation into other substrates and biochemical components should be performed, our study reveals Raman spectroscopy has the potential to accurately and nondestructively determine the age of a bloodstain for use in criminal investigations.
The element selenium plays three distinct roles in biological processes, functioning in turn as a toxicant, a chemopreventive agent, and a heavy metal antagonist. This article discusses current research associated with each role, and how ICP-MS can be employed to better understand and utilize selenium's properties.
The authors present a novel technique for obtaining very high stability and reproducibility of a Raman spectrum, using grating corrected laser stabilization. An externally stabilized laser with a grating spectrometer provides exceptional quantum efficiency in the entire dynamic range. These components then are used to build a library of pharmaceutical raw materials and tested on samples of unknown material.
See how Raman microscopy in combination with SEM, AFM, topographic imaging, and other methods can characterize properties of geoscience samples.
A new system for multitechnique spectral searching is described that utilizes analysis of several hit lists resulting from spectral similarity searches performed simultaneously in reference databases for multiple complementary analytical techniques. This paper demonstrates the benefits of this multitechnique approach using the complementary techniques of IR and Raman spectroscopy.
This article is the third installment in a series about a novel spectrofluorometric method that allow for in vivo observation of the division of chlorplast populations in leaves of Arabidopsis thalania.
Given the wide range in polarity of the components of mesquite flour, it is advantageous to study the health benefits of this flour using methods that combine the complementary approaches of reversed-phase and aqueous normal phase LC.
We continue our explanation of the new PIC/S data guidance.
A new system for multitechnique spectral searching is described that utilizes analysis of several hit lists resulting from spectral similarity searches performed simultaneously in reference databases for multiple complementary analytical techniques. This paper demonstrates the benefits of this multitechnique approach using the complementary techniques of IR and Raman spectroscopy.
The authors discuss the use of high-resolution LC-MS to analyze complex samples in regulated environments such as food and animal-feed analysis.
The author describes applying validation principles originally designed for lab instruments to process instruments.
This article discusses the role of recent LC developments in th quest for greater sensitivity, more complete sample characterization, and greater productivity.
Mass spectrometers are effective for identifying and quantifying unknown molecules, such as disease-related proteins and small molecules in pharmaceutical research and medical diagnosis. In addition, mass spectrometry (MS) can be particularly powerful when analyzing molecules with complex structures, such as posttranslationally modified proteins. Among various MS approaches, high-resolution multistep tandem MS (MS-MS) is an emerging methodology for accurate identification of complex molecules. In this article, we describe a new approach for mass analysis with enhanced quantitative capability combined with high-resolution multistep MS-MS, where the dynamic range of quantitation covers four orders of magnitude.
The authors review the operating principles of a silicon Raman laser and show that by introducing a longitudinal variation of the waveguide width in the cavity, the lasing efficiency can be increased significantly.
Using confocal Raman imaging and other advanced measurement techniques, we study the localized strain characteristics of tungsten diselenide (WSe2), an important nanomaterial used for optoelectronic device applications.
Mass spectrometry has long been a preferred tool for protein identification and biomarker discovery, but preparation of biological samples remains a challenge. Hindrances include the wide range of protein concentrations, sample complexity, and loss or alteration of important proteins due to sample handling. This article describes recent developments in sample fractionation technologies that are overcoming these challenges in interesting ways and are enabling in-depth proteomic studies that were not possible in the past.
Bottled water has become increasingly popular over the past several years for convenience and safety. In some areas where publicly supplied tap water is contaminated or contains bacteria, this assumption is valid. However, in areas with clean tap water, the presence of bottled water can be controversial because it might be less clean than the local tap. This article discusses the analysis of inorganic contaminants in bottled water, including regulated contaminants and bromate. Detection limit considerations and speed of analysis also are discussed.
Surface-enhanced Raman spectroscopy (SERS) is a widely studied technique capable of adding single-molecule detection capability to the rich information provided by Raman spectroscopy. in this aricle, the authors show an additional system gain of more than two orders of magnitude to SERS by using a dielectric microsphere resonator to capture and excite the target system.
In this article, the role of a triple-quadrupole mass spectrometer in performing in vitro studies of compound metabolic stability and identification of Phase I and II metabolites is demonstrated.
A transportable miniature Fourier-transform ion cyclotron resonance mass spectrometer is used to identify chemical species and remove isobaric interferences in gas analysis. Experimental results use real time direct analysis without the need for additional separation.
In this article, the role of a triple-quadrupole mass spectrometer in performing in vitro studies of compound metabolic stability and identification of Phase I and II metabolites is demonstrated.
Ultrahigh performance liquid chromatography (LC)–time-of-flight mass spectrometry –(TOF-MS) and gas chromatography (GC)–TOF-MS are powerful approaches for screening target compounds and identifying or characterizing nontarget compounds in complex mixtures. The combination of accurate mass data and newly developed software enables truly generic screening methods with TOF-MS, and the confident detection, identification, and confirmation of small molecules in a range of application areas.
A new system for multitechnique spectral searching is described that utilizes analysis of several hit lists resulting from spectral similarity searches performed simultaneously in reference databases for multiple complementary analytical techniques. This paper demonstrates the benefits of this multitechnique approach using the complementary techniques of IR and Raman spectroscopy.
The need to verify cleaning between manufacturing runs presents a special challenge to the analytical chemist. In this article, the principles of ion mobility spectrometry are described, its performance is compared to HPLC for the analysis of cleaning validation samples, and findings are presented from a study to establish the feasibility of using IMS in validating a cleaning verification method.