In this article, the authors discuss the need for protection against chemical attacks and the role of passive imaging spectroradiometers in the detection of remote chemical agents.
The authors discuss the use of near-infrared spectroscopy to determine the age of a bloodstain, which can be critical in helping establish when a crime was committed.
The authors discuss progress in near-field IR microspectroscopy using a photothermal probe and show how it can be applied to the spectroscopic characterization of real-world samples.
A person-portable gas chromatography–mass spectrometry (GC–MS) system employing a toroidal ion trap mass spectrometry (TMS) detector was used to analyze chemical threat related compounds. Introduction of analytes into the heated injector of the instrument was by solid-phase microextraction (SPME), and fast resistive heating of a low thermal mass (LTM) gas chromatography column assembly provided rapid analysis times. Methodology for positive identification of chemical threats can combine chromatographic retention time, comparison to traditional electron ionization mass spectral libraries, and observation of expected pseudomolecular ions produced through self-chemical ionization. Methods are discussed for sampling by SPME with GC–MS analysis in the field to measure airborne analyte concentrations.
This article describes how ultratrace aluminum analysis of two nutritional intravenous solution components with limited water solubility can be performed by graphite furnace atomic absorption spectroscopy (GFAAS) with dissolution in 1-propanol.
This article discusses instruments that can be used in the field to rapidly and accurately identify various explosives and their precursors.
The need for reference materials that can be applied in the area of thin films analysis has long been realized but is still, in general, under-addressed. Alumina films of single-micrometer thickness, having either fine distributions of impurities or delta function impurity marker layers, can be prepared routinely by anodic oxidation of electropolished aluminum specimens in appropriate electrolytes. Selected films were examined by transmission electron microscopy (TEM) and analyzed by radio frequency glow discharge optical emission spectroscopy (rf-GD-OES), providing very rapid, yet high-resolution, depth-resolved analysis of these electrically insulating materials.
There are many situations in which it would be highly desirable to apply the benefits of Raman to larger volumes of solid material such as powders, tablets, and composites. Raman benefits such as minimal sample preparation, the ability to provide rich information on both organics and inorganics, and its ability to measure through glass and plastic packaging make it highly amenable to these kinds of samples.
The authors show that dynamic reaction cell ICP MS can eliminate a number of argon- and carbon-based polyatomic interferences, allowing the determination of many critical elements in problematic organic compounds found in the semiconductor industry.
The development of analytical instrumentation for harsh terrestrial environments and outer planet space exploration exponentially increases instrument requirements-for features such as robustness, autonomous operation, and speed-and poses unique system integration challenges. Here, we explore the use of laser thermal desorption coupled to comprehensive two-dimensional gas chromatography (LTD-GC×GC) for use with a compact, high-resolution mass spectrometer for challenging applications.
The authors demonstrate the capacity to separate petroleum-derived molecules having the same nominal mass in the mobility dimension using IM-MS spectrometry.
Improvements in engineering and manufacturing processes and tools have rapidly lowered the cost to make products, and to distribute them. The next generation of optical sensing technologies will offer a framework for the creation and testing of new business models based upon the distribution of knowledge and service. In fact, this concept of "distributed sensing" already has emerged in networked systems monitoring various aspects of the environment.
The authors discuss the use of near-infrared spectroscopy to determine the age of a bloodstain, which can be critical in helping establish when a crime was committed.
There is far more matter than antimatter in our universe, but scientists don?t know enough about the properties of antimatter to understand why. By spectroscopically analyzing atoms created when antiprotons collide with helium, physicists at CERN are measuring the properties of antimatter with unprecedented accuracy.
In this article, methods developed for rapid, automated detection of CWAs and TICs using a low thermal mass capillary gas chromatograph coupled to a toroidal ion trap mass spectrometer (TMS) are presented.
The following article is adapted from a chapter in the author’s textbook, Practical Guide to ICP-MS and Other AS Techniques: A Tutorial for Beginners, published by CRC Press.
The authors discuss the use of serial coulometric flow cells coupled online with electrospray ionization mass spectrometry in predictive assays for absorption, distribution, metabolism, excretion, toxicity (ADME/Tox), and stability implemented at early stages of drug discovery.
We present a brief review of this year's ASMS conference, which took place June 5–9, 2011, in Denver, Colorado.
Specific purity requirements are set for water sources, whether we deal with waste, ground, surface, or drinking water. Water quality is key, and it is becoming a focal point for an increasing number of communities worldwide. Water quality determines the use of a body of water such as for manufacturing, farming, fishing, and human consumption. The reason to strive to maintain or improve a given body of water is to preserve or upgrade its quality, because once this quality degrades, so does its value.
Analyze recycled polyethylene to improve your PE quality using a swapple-furnace DSC operating the broadest temp range at its price point and high-throughput autosampling.
A person-portable gas chromatography–mass spectrometry (GC–MS) system employing a toroidal ion trap mass spectrometry (TMS) detector was used to analyze chemical threat related compounds. Introduction of analytes into the heated injector of the instrument was by solid-phase microextraction (SPME), and fast resistive heating of a low thermal mass (LTM) gas chromatography column assembly provided rapid analysis times. Methodology for positive identification of chemical threats can combine chromatographic retention time, comparison to traditional electron ionization mass spectral libraries, and observation of expected pseudomolecular ions produced through self-chemical ionization. Methods are discussed for sampling by SPME with GC–MS analysis in the field to measure airborne analyte concentrations.
The authors discuss progress in near-field IR microspectroscopy using a photothermal probe and show how it can be applied to the spectroscopic characterization of real-world samples.
The authors demonstrate the capacity to separate petroleum-derived molecules having the same nominal mass in the mobility dimension using IM-MS spectrometry.
The authors discuss the use of serial coulometric flow cells coupled online with electrospray ionization mass spectrometry in predictive assays for absorption, distribution, metabolism, excretion, toxicity (ADME/Tox), and stability implemented at early stages of drug discovery.
The analysis of toy samples for toxic trace elements has been undertaken for many years. However, a number of recent cases of toys contaminated with heavy metals has attracted global media attention. This has resulted in an increase in the number of toy manufacturers performing their own 'in-house' testing. This 'in-house' testing is not only to ensure regulatory compliance; it is also proving significantly more cost effective than outsourcing the analysis.
This article discusses the analysis of a wide range of CWAs at current exposure limits and describes a number of recent beneficial developments in TD and associated analytical technologies for the identification and quantification of CWAs at these levels.
Specific purity requirements are set for water sources, whether we deal with waste, ground, surface, or drinking water. Water quality is key, and it is becoming a focal point for an increasing number of communities worldwide. Water quality determines the use of a body of water such as for manufacturing, farming, fishing, and human consumption. The reason to strive to maintain or improve a given body of water is to preserve or upgrade its quality, because once this quality degrades, so does its value.
Clays, like kaolinite and smectite, are hygroscopic and it is well known that the adsorbed water can be driven off at elevated temperatures. At very low temperatures, in addition to the typical band narrowing and shifting, changes in the O-H bond vibrational modes of clays have also been observed.