Authors


Lester Taylor

Latest:

Using High-Resolution LC–MS to Analyze Complex Sample

The authors discuss the use of high-resolution LC-MS to analyze complex samples in regulated environments such as food and animal-feed analysis.


Sudesh Bhure

Latest:

Synthesis and Structural Elucidation of Impurities in Ramipril Tablets

In this article, the authors take a look at the identification, synthesis, and characterization of impurities in Ramipril tablets.


Ed George

Latest:

Determination of Volatile Organic Compounds in Water by In-Tube Extraction and Gas Chromatography with Ion-Trap Mass Spectrometry

The in-tube extraction technique for determination of volatile organic compounds in water is described.


Haibo Wang

Latest:

Determination of Volatile Organic Compounds in Water by In-Tube Extraction and Gas Chromatography with Ion-Trap Mass Spectrometry

The in-tube extraction technique for determination of volatile organic compounds in water is described.


Pauline E. Leary

Latest:

Optimized Explosives Analysis Using Portable Gas Chromatography–Mass Spectrometry for Battlefield Forensics

When explosives are encountered on the battlefield, the use of portable GC–MS is valuable for the detection and confirmatory identification of pre- and post-detonation threats. In addition, this technique provides information about the source of explosives based on the detection and identification of trace-level chemicals in the sample. The data presented here confirm this capability.


Liming Peng

Latest:

A Simplified Approach to Optimize SPE Method Development with Downstream LC–MS Analysis Allowing 100% Organic, Basified Injection Solvents

Here, the authors demonstrate the use of a systematized approach to SPE method development and LC–MS-MS analysis.


Huilan Chen

Latest:

LC–MS-MS Determination of Malachite Green and Leucomalachite Green in Fish Products

Although not currently used in U.S. or European aquaculture, malachite green (MG) is still an effective and inexpensive fungicide that is used in other countries, particularly in Asia. During metabolism, MG reduces to leucomalachite green (LMG) (Figure 1), which has been shown to accumulate in fatty fish tissues. Trace levels of MG and LMG residues continue to be found in fish products. In a 2005 report, MG was found in 18 out of 27 live eel or eel products imported from China to Hong Kong local market and food outlets, resulting in a government recall and destruction of all remaining products (1).


Ronald Starcher

Latest:

Improving Ionization in Mass Spectrometry (PDF)

The author discusses an alternative to filament sources when working with electron ionization.


Jingzhong Xu

Latest:

LC–MS-MS Determination of Malachite Green and Leucomalachite Green in Fish Products

Although not currently used in U.S. or European aquaculture, malachite green (MG) is still an effective and inexpensive fungicide that is used in other countries, particularly in Asia. During metabolism, MG reduces to leucomalachite green (LMG) (Figure 1), which has been shown to accumulate in fatty fish tissues. Trace levels of MG and LMG residues continue to be found in fish products. In a 2005 report, MG was found in 18 out of 27 live eel or eel products imported from China to Hong Kong local market and food outlets, resulting in a government recall and destruction of all remaining products (1).


Christopher Elicone

Latest:

GSH Conjugate Metabolite Identification with a Hybrid Triple- Quadrupole–Linear Ion-Trap Instrument and Automated Software-Driven Method Development

In drug discovery, determining information about the extent of metabolism and the elucidation of metabolite structures is a vital step for lead optimization and drug scaffold refinement. The identification and characterization of metabolites plays an important role in both the drug discovery and development phases, as unsuitable pharmacokinetics (bioavailability and drug distribution), toxicity, and adverse drug reactions might be linked to metabolic instability. Historically, metabolite identification was carried out after a compound had been chosen for drug development. However, to reduce candidate failures attributed to toxicity effects, many pharmaceutical companies now conduct these experiments in the earliest phases of candidate drug selection.


Tiffany C. Wirth

Latest:

Rapid Field Detection of Chemical Warfare Agents and Toxic Industrial Chemicals Using a Hand-Portable GC–TMS System

In this article, methods developed for rapid, automated detection of CWAs and TICs using a low thermal mass capillary gas chromatograph coupled to a toroidal ion trap mass spectrometer (TMS) are presented.



John Seelenbinder

Latest:

Diffuse Reflectance Spectroscopy Using a Handheld FTIR

As has been previously discussed (1), FTIR spectroscopy is emerging as a technique that can be effectively used for applications and/or in locations that heretofore would be considered too demanding. The development of portable FTIRs, and more recently handheld FTIRs, is significant because it enables this powerful analytical technique to solve problems for a whole range of new applications, both in the laboratory, and out of the laboratory.


Vincent Farley

Latest:

Chemical Warfare Agent Spectral Imaging for Real-Time Identification and Localization

In this article, the authors discuss the need for protection against chemical attacks and the role of passive imaging spectroradiometers in the detection of remote chemical agents.


Edita Botonjic-Sehic

Latest:

Forensic Application of Near-Infrared Spectroscopy: Aging of Bloodstains

The authors discuss the use of near-infrared spectroscopy to determine the age of a bloodstain, which can be critical in helping establish when a crime was committed.


Philippe Lagueux

Latest:

Chemical Warfare Agent Spectral Imaging for Real-Time Identification and Localization

In this article, the authors discuss the need for protection against chemical attacks and the role of passive imaging spectroradiometers in the detection of remote chemical agents.


David Gregson

Latest:

Comparison of Secondary Structures of Similar Proteins Using Automated CD

In this study, far-UV CD spectra of eight different mammalian serum albumins were measured repeatedly using automated CD spectroscopy. Two independent methods of normalizing the CD data were used to eliminate the need for accurate knowledge of protein concentration or extinction coefficient. The normalized far-UV data, representative of secondary structure, were compared to determine if there were statistically significant differences between samples. The two normalization methods agreed in every case, increasing confidence in the results.


Julie Wingate

Latest:

GSH Conjugate Metabolite Identification with a Hybrid Triple- Quadrupole–Linear Ion-Trap Instrument and Automated Software-Driven Method Development

In drug discovery, determining information about the extent of metabolism and the elucidation of metabolite structures is a vital step for lead optimization and drug scaffold refinement. The identification and characterization of metabolites plays an important role in both the drug discovery and development phases, as unsuitable pharmacokinetics (bioavailability and drug distribution), toxicity, and adverse drug reactions might be linked to metabolic instability. Historically, metabolite identification was carried out after a compound had been chosen for drug development. However, to reduce candidate failures attributed to toxicity effects, many pharmaceutical companies now conduct these experiments in the earliest phases of candidate drug selection.


Gavin Davies

Latest:

Chemical Warfare Agents and Use of Thermal Desorption–GC–MS to Achieve Improved Trace-Level Detection

This article discusses the analysis of a wide range of CWAs at current exposure limits and describes a number of recent beneficial developments in TD and associated analytical technologies for the identification and quantification of CWAs at these levels.



Azzedine Hammiche

Latest:

Mid-infrared Microspectroscopy of Difficult Samples Using Near-Field Photothermal Microspectroscopy (PTMS) [PDF]

The authors discuss progress in near-field IR microspectroscopy using a photothermal probe and show how it can be applied to the spectroscopic characterization of real-world samples.


Martin Chamberland

Latest:

Chemical Warfare Agent Spectral Imaging for Real-Time Identification and Localization

In this article, the authors discuss the need for protection against chemical attacks and the role of passive imaging spectroradiometers in the detection of remote chemical agents.


Mary Tsaparikos

Latest:

Forensic Application of Near-Infrared Spectroscopy: Aging of Bloodstains

The authors discuss the use of near-infrared spectroscopy to determine the age of a bloodstain, which can be critical in helping establish when a crime was committed.


Graham Poulter

Latest:

Mid-infrared Microspectroscopy of Difficult Samples Using Near-Field Photothermal Microspectroscopy (PTMS) [PDF]

The authors discuss progress in near-field IR microspectroscopy using a photothermal probe and show how it can be applied to the spectroscopic characterization of real-world samples.



Douglas W. Later

Latest:

Rapid Chemical Threat Identification by SPME-GC–TMS

A person-portable gas chromatography–mass spectrometry (GC–MS) system employing a toroidal ion trap mass spectrometry (TMS) detector was used to analyze chemical threat related compounds. Introduction of analytes into the heated injector of the instrument was by solid-phase microextraction (SPME), and fast resistive heating of a low thermal mass (LTM) gas chromatography column assembly provided rapid analysis times. Methodology for positive identification of chemical threats can combine chromatographic retention time, comparison to traditional electron ionization mass spectral libraries, and observation of expected pseudomolecular ions produced through self-chemical ionization. Methods are discussed for sampling by SPME with GC–MS analysis in the field to measure airborne analyte concentrations.


Jennifer Wisser

Latest:

Ultratrace Aluminum Analysis of Nutritional Intravenous Solution Components in 1-Propanol Using GFAAS (PDF)

This article describes how ultratrace aluminum analysis of two nutritional intravenous solution components with limited water solubility can be performed by graphite furnace atomic absorption spectroscopy (GFAAS) with dissolution in 1-propanol.


Duane Sword

Latest:

Portable FT-IR and Raman Spectroscopy for Explosives Identification

This article discusses instruments that can be used in the field to rapidly and accurately identify various explosives and their precursors.


G.E. Thompson

Latest:

Radio Frequency Glow Discharge Optical Emission Spectroscopy: Depth Profiling Analysis of Thin Anodic Alumina Films as Potential Reference Materials (PDF)

The need for reference materials that can be applied in the area of thin films analysis has long been realized but is still, in general, under-addressed. Alumina films of single-micrometer thickness, having either fine distributions of impurities or delta function impurity marker layers, can be prepared routinely by anodic oxidation of electropolished aluminum specimens in appropriate electrolytes. Selected films were examined by transmission electron microscopy (TEM) and analyzed by radio frequency glow discharge optical emission spectroscopy (rf-GD-OES), providing very rapid, yet high-resolution, depth-resolved analysis of these electrically insulating materials.


Joe Hodkiewicz

Latest:

Raman Spectroscopy as a Rapid Characterization Tool for Heterogeneous Solids

There are many situations in which it would be highly desirable to apply the benefits of Raman to larger volumes of solid material such as powders, tablets, and composites. Raman benefits such as minimal sample preparation, the ability to provide rich information on both organics and inorganics, and its ability to measure through glass and plastic packaging make it highly amenable to these kinds of samples.